/* Simple DirectMedia Layer Copyright (C) 1997-2012 Sam Lantinga This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ #include "SDL_config.h" /* This is the software implementation of the YUV texture support */ /* This code was derived from code carrying the following copyright notices: * Copyright (c) 1995 The Regents of the University of California. * All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation for any purpose, without fee, and without written agreement is * hereby granted, provided that the above copyright notice and the following * two paragraphs appear in all copies of this software. * * IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT * OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF * CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. * Copyright (c) 1995 Erik Corry * All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation for any purpose, without fee, and without written agreement is * hereby granted, provided that the above copyright notice and the following * two paragraphs appear in all copies of this software. * * IN NO EVENT SHALL ERIK CORRY BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, * SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF * THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF ERIK CORRY HAS BEEN ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * * ERIK CORRY SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" * BASIS, AND ERIK CORRY HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, * UPDATES, ENHANCEMENTS, OR MODIFICATIONS. * Portions of this software Copyright (c) 1995 Brown University. * All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation for any purpose, without fee, and without written agreement * is hereby granted, provided that the above copyright notice and the * following two paragraphs appear in all copies of this software. * * IN NO EVENT SHALL BROWN UNIVERSITY BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT * OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF BROWN * UNIVERSITY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * BROWN UNIVERSITY SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" * BASIS, AND BROWN UNIVERSITY HAS NO OBLIGATION TO PROVIDE MAINTENANCE, * SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. */ #include "SDL_video.h" #include "SDL_cpuinfo.h" #include "SDL_yuv_sw_c.h" /* The colorspace conversion functions */ #if (__GNUC__ > 2) && defined(__i386__) && __OPTIMIZE__ && SDL_ASSEMBLY_ROUTINES extern void Color565DitherYV12MMX1X(int *colortab, Uint32 * rgb_2_pix, unsigned char *lum, unsigned char *cr, unsigned char *cb, unsigned char *out, int rows, int cols, int mod); extern void ColorRGBDitherYV12MMX1X(int *colortab, Uint32 * rgb_2_pix, unsigned char *lum, unsigned char *cr, unsigned char *cb, unsigned char *out, int rows, int cols, int mod); #endif static void Color16DitherYV12Mod1X(int *colortab, Uint32 * rgb_2_pix, unsigned char *lum, unsigned char *cr, unsigned char *cb, unsigned char *out, int rows, int cols, int mod) { unsigned short *row1; unsigned short *row2; unsigned char *lum2; int x, y; int cr_r; int crb_g; int cb_b; int cols_2 = cols / 2; row1 = (unsigned short *) out; row2 = row1 + cols + mod; lum2 = lum + cols; mod += cols + mod; y = rows / 2; while (y--) { x = cols_2; while (x--) { register int L; cr_r = 0 * 768 + 256 + colortab[*cr + 0 * 256]; crb_g = 1 * 768 + 256 + colortab[*cr + 1 * 256] + colortab[*cb + 2 * 256]; cb_b = 2 * 768 + 256 + colortab[*cb + 3 * 256]; ++cr; ++cb; L = *lum++; *row1++ = (unsigned short) (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); L = *lum++; *row1++ = (unsigned short) (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); /* Now, do second row. */ L = *lum2++; *row2++ = (unsigned short) (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); L = *lum2++; *row2++ = (unsigned short) (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); } /* * These values are at the start of the next line, (due * to the ++'s above),but they need to be at the start * of the line after that. */ lum += cols; lum2 += cols; row1 += mod; row2 += mod; } } static void Color24DitherYV12Mod1X(int *colortab, Uint32 * rgb_2_pix, unsigned char *lum, unsigned char *cr, unsigned char *cb, unsigned char *out, int rows, int cols, int mod) { unsigned int value; unsigned char *row1; unsigned char *row2; unsigned char *lum2; int x, y; int cr_r; int crb_g; int cb_b; int cols_2 = cols / 2; row1 = out; row2 = row1 + cols * 3 + mod * 3; lum2 = lum + cols; mod += cols + mod; mod *= 3; y = rows / 2; while (y--) { x = cols_2; while (x--) { register int L; cr_r = 0 * 768 + 256 + colortab[*cr + 0 * 256]; crb_g = 1 * 768 + 256 + colortab[*cr + 1 * 256] + colortab[*cb + 2 * 256]; cb_b = 2 * 768 + 256 + colortab[*cb + 3 * 256]; ++cr; ++cb; L = *lum++; value = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); *row1++ = (value) & 0xFF; *row1++ = (value >> 8) & 0xFF; *row1++ = (value >> 16) & 0xFF; L = *lum++; value = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); *row1++ = (value) & 0xFF; *row1++ = (value >> 8) & 0xFF; *row1++ = (value >> 16) & 0xFF; /* Now, do second row. */ L = *lum2++; value = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); *row2++ = (value) & 0xFF; *row2++ = (value >> 8) & 0xFF; *row2++ = (value >> 16) & 0xFF; L = *lum2++; value = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); *row2++ = (value) & 0xFF; *row2++ = (value >> 8) & 0xFF; *row2++ = (value >> 16) & 0xFF; } /* * These values are at the start of the next line, (due * to the ++'s above),but they need to be at the start * of the line after that. */ lum += cols; lum2 += cols; row1 += mod; row2 += mod; } } static void Color32DitherYV12Mod1X(int *colortab, Uint32 * rgb_2_pix, unsigned char *lum, unsigned char *cr, unsigned char *cb, unsigned char *out, int rows, int cols, int mod) { unsigned int *row1; unsigned int *row2; unsigned char *lum2; int x, y; int cr_r; int crb_g; int cb_b; int cols_2 = cols / 2; row1 = (unsigned int *) out; row2 = row1 + cols + mod; lum2 = lum + cols; mod += cols + mod; y = rows / 2; while (y--) { x = cols_2; while (x--) { register int L; cr_r = 0 * 768 + 256 + colortab[*cr + 0 * 256]; crb_g = 1 * 768 + 256 + colortab[*cr + 1 * 256] + colortab[*cb + 2 * 256]; cb_b = 2 * 768 + 256 + colortab[*cb + 3 * 256]; ++cr; ++cb; L = *lum++; *row1++ = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); L = *lum++; *row1++ = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); /* Now, do second row. */ L = *lum2++; *row2++ = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); L = *lum2++; *row2++ = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); } /* * These values are at the start of the next line, (due * to the ++'s above),but they need to be at the start * of the line after that. */ lum += cols; lum2 += cols; row1 += mod; row2 += mod; } } /* * In this function I make use of a nasty trick. The tables have the lower * 16 bits replicated in the upper 16. This means I can write ints and get * the horisontal doubling for free (almost). */ static void Color16DitherYV12Mod2X(int *colortab, Uint32 * rgb_2_pix, unsigned char *lum, unsigned char *cr, unsigned char *cb, unsigned char *out, int rows, int cols, int mod) { unsigned int *row1 = (unsigned int *) out; const int next_row = cols + (mod / 2); unsigned int *row2 = row1 + 2 * next_row; unsigned char *lum2; int x, y; int cr_r; int crb_g; int cb_b; int cols_2 = cols / 2; lum2 = lum + cols; mod = (next_row * 3) + (mod / 2); y = rows / 2; while (y--) { x = cols_2; while (x--) { register int L; cr_r = 0 * 768 + 256 + colortab[*cr + 0 * 256]; crb_g = 1 * 768 + 256 + colortab[*cr + 1 * 256] + colortab[*cb + 2 * 256]; cb_b = 2 * 768 + 256 + colortab[*cb + 3 * 256]; ++cr; ++cb; L = *lum++; row1[0] = row1[next_row] = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); row1++; L = *lum++; row1[0] = row1[next_row] = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); row1++; /* Now, do second row. */ L = *lum2++; row2[0] = row2[next_row] = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); row2++; L = *lum2++; row2[0] = row2[next_row] = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); row2++; } /* * These values are at the start of the next line, (due * to the ++'s above),but they need to be at the start * of the line after that. */ lum += cols; lum2 += cols; row1 += mod; row2 += mod; } } static void Color24DitherYV12Mod2X(int *colortab, Uint32 * rgb_2_pix, unsigned char *lum, unsigned char *cr, unsigned char *cb, unsigned char *out, int rows, int cols, int mod) { unsigned int value; unsigned char *row1 = out; const int next_row = (cols * 2 + mod) * 3; unsigned char *row2 = row1 + 2 * next_row; unsigned char *lum2; int x, y; int cr_r; int crb_g; int cb_b; int cols_2 = cols / 2; lum2 = lum + cols; mod = next_row * 3 + mod * 3; y = rows / 2; while (y--) { x = cols_2; while (x--) { register int L; cr_r = 0 * 768 + 256 + colortab[*cr + 0 * 256]; crb_g = 1 * 768 + 256 + colortab[*cr + 1 * 256] + colortab[*cb + 2 * 256]; cb_b = 2 * 768 + 256 + colortab[*cb + 3 * 256]; ++cr; ++cb; L = *lum++; value = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); row1[0 + 0] = row1[3 + 0] = row1[next_row + 0] = row1[next_row + 3 + 0] = (value) & 0xFF; row1[0 + 1] = row1[3 + 1] = row1[next_row + 1] = row1[next_row + 3 + 1] = (value >> 8) & 0xFF; row1[0 + 2] = row1[3 + 2] = row1[next_row + 2] = row1[next_row + 3 + 2] = (value >> 16) & 0xFF; row1 += 2 * 3; L = *lum++; value = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); row1[0 + 0] = row1[3 + 0] = row1[next_row + 0] = row1[next_row + 3 + 0] = (value) & 0xFF; row1[0 + 1] = row1[3 + 1] = row1[next_row + 1] = row1[next_row + 3 + 1] = (value >> 8) & 0xFF; row1[0 + 2] = row1[3 + 2] = row1[next_row + 2] = row1[next_row + 3 + 2] = (value >> 16) & 0xFF; row1 += 2 * 3; /* Now, do second row. */ L = *lum2++; value = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); row2[0 + 0] = row2[3 + 0] = row2[next_row + 0] = row2[next_row + 3 + 0] = (value) & 0xFF; row2[0 + 1] = row2[3 + 1] = row2[next_row + 1] = row2[next_row + 3 + 1] = (value >> 8) & 0xFF; row2[0 + 2] = row2[3 + 2] = row2[next_row + 2] = row2[next_row + 3 + 2] = (value >> 16) & 0xFF; row2 += 2 * 3; L = *lum2++; value = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); row2[0 + 0] = row2[3 + 0] = row2[next_row + 0] = row2[next_row + 3 + 0] = (value) & 0xFF; row2[0 + 1] = row2[3 + 1] = row2[next_row + 1] = row2[next_row + 3 + 1] = (value >> 8) & 0xFF; row2[0 + 2] = row2[3 + 2] = row2[next_row + 2] = row2[next_row + 3 + 2] = (value >> 16) & 0xFF; row2 += 2 * 3; } /* * These values are at the start of the next line, (due * to the ++'s above),but they need to be at the start * of the line after that. */ lum += cols; lum2 += cols; row1 += mod; row2 += mod; } } static void Color32DitherYV12Mod2X(int *colortab, Uint32 * rgb_2_pix, unsigned char *lum, unsigned char *cr, unsigned char *cb, unsigned char *out, int rows, int cols, int mod) { unsigned int *row1 = (unsigned int *) out; const int next_row = cols * 2 + mod; unsigned int *row2 = row1 + 2 * next_row; unsigned char *lum2; int x, y; int cr_r; int crb_g; int cb_b; int cols_2 = cols / 2; lum2 = lum + cols; mod = (next_row * 3) + mod; y = rows / 2; while (y--) { x = cols_2; while (x--) { register int L; cr_r = 0 * 768 + 256 + colortab[*cr + 0 * 256]; crb_g = 1 * 768 + 256 + colortab[*cr + 1 * 256] + colortab[*cb + 2 * 256]; cb_b = 2 * 768 + 256 + colortab[*cb + 3 * 256]; ++cr; ++cb; L = *lum++; row1[0] = row1[1] = row1[next_row] = row1[next_row + 1] = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); row1 += 2; L = *lum++; row1[0] = row1[1] = row1[next_row] = row1[next_row + 1] = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); row1 += 2; /* Now, do second row. */ L = *lum2++; row2[0] = row2[1] = row2[next_row] = row2[next_row + 1] = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); row2 += 2; L = *lum2++; row2[0] = row2[1] = row2[next_row] = row2[next_row + 1] = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); row2 += 2; } /* * These values are at the start of the next line, (due * to the ++'s above),but they need to be at the start * of the line after that. */ lum += cols; lum2 += cols; row1 += mod; row2 += mod; } } static void Color16DitherYUY2Mod1X(int *colortab, Uint32 * rgb_2_pix, unsigned char *lum, unsigned char *cr, unsigned char *cb, unsigned char *out, int rows, int cols, int mod) { unsigned short *row; int x, y; int cr_r; int crb_g; int cb_b; int cols_2 = cols / 2; row = (unsigned short *) out; y = rows; while (y--) { x = cols_2; while (x--) { register int L; cr_r = 0 * 768 + 256 + colortab[*cr + 0 * 256]; crb_g = 1 * 768 + 256 + colortab[*cr + 1 * 256] + colortab[*cb + 2 * 256]; cb_b = 2 * 768 + 256 + colortab[*cb + 3 * 256]; cr += 4; cb += 4; L = *lum; lum += 2; *row++ = (unsigned short) (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); L = *lum; lum += 2; *row++ = (unsigned short) (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); } row += mod; } } static void Color24DitherYUY2Mod1X(int *colortab, Uint32 * rgb_2_pix, unsigned char *lum, unsigned char *cr, unsigned char *cb, unsigned char *out, int rows, int cols, int mod) { unsigned int value; unsigned char *row; int x, y; int cr_r; int crb_g; int cb_b; int cols_2 = cols / 2; row = (unsigned char *) out; mod *= 3; y = rows; while (y--) { x = cols_2; while (x--) { register int L; cr_r = 0 * 768 + 256 + colortab[*cr + 0 * 256]; crb_g = 1 * 768 + 256 + colortab[*cr + 1 * 256] + colortab[*cb + 2 * 256]; cb_b = 2 * 768 + 256 + colortab[*cb + 3 * 256]; cr += 4; cb += 4; L = *lum; lum += 2; value = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); *row++ = (value) & 0xFF; *row++ = (value >> 8) & 0xFF; *row++ = (value >> 16) & 0xFF; L = *lum; lum += 2; value = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); *row++ = (value) & 0xFF; *row++ = (value >> 8) & 0xFF; *row++ = (value >> 16) & 0xFF; } row += mod; } } static void Color32DitherYUY2Mod1X(int *colortab, Uint32 * rgb_2_pix, unsigned char *lum, unsigned char *cr, unsigned char *cb, unsigned char *out, int rows, int cols, int mod) { unsigned int *row; int x, y; int cr_r; int crb_g; int cb_b; int cols_2 = cols / 2; row = (unsigned int *) out; y = rows; while (y--) { x = cols_2; while (x--) { register int L; cr_r = 0 * 768 + 256 + colortab[*cr + 0 * 256]; crb_g = 1 * 768 + 256 + colortab[*cr + 1 * 256] + colortab[*cb + 2 * 256]; cb_b = 2 * 768 + 256 + colortab[*cb + 3 * 256]; cr += 4; cb += 4; L = *lum; lum += 2; *row++ = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); L = *lum; lum += 2; *row++ = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); } row += mod; } } /* * In this function I make use of a nasty trick. The tables have the lower * 16 bits replicated in the upper 16. This means I can write ints and get * the horisontal doubling for free (almost). */ static void Color16DitherYUY2Mod2X(int *colortab, Uint32 * rgb_2_pix, unsigned char *lum, unsigned char *cr, unsigned char *cb, unsigned char *out, int rows, int cols, int mod) { unsigned int *row = (unsigned int *) out; const int next_row = cols + (mod / 2); int x, y; int cr_r; int crb_g; int cb_b; int cols_2 = cols / 2; y = rows; while (y--) { x = cols_2; while (x--) { register int L; cr_r = 0 * 768 + 256 + colortab[*cr + 0 * 256]; crb_g = 1 * 768 + 256 + colortab[*cr + 1 * 256] + colortab[*cb + 2 * 256]; cb_b = 2 * 768 + 256 + colortab[*cb + 3 * 256]; cr += 4; cb += 4; L = *lum; lum += 2; row[0] = row[next_row] = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); row++; L = *lum; lum += 2; row[0] = row[next_row] = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); row++; } row += next_row; } } static void Color24DitherYUY2Mod2X(int *colortab, Uint32 * rgb_2_pix, unsigned char *lum, unsigned char *cr, unsigned char *cb, unsigned char *out, int rows, int cols, int mod) { unsigned int value; unsigned char *row = out; const int next_row = (cols * 2 + mod) * 3; int x, y; int cr_r; int crb_g; int cb_b; int cols_2 = cols / 2; y = rows; while (y--) { x = cols_2; while (x--) { register int L; cr_r = 0 * 768 + 256 + colortab[*cr + 0 * 256]; crb_g = 1 * 768 + 256 + colortab[*cr + 1 * 256] + colortab[*cb + 2 * 256]; cb_b = 2 * 768 + 256 + colortab[*cb + 3 * 256]; cr += 4; cb += 4; L = *lum; lum += 2; value = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); row[0 + 0] = row[3 + 0] = row[next_row + 0] = row[next_row + 3 + 0] = (value) & 0xFF; row[0 + 1] = row[3 + 1] = row[next_row + 1] = row[next_row + 3 + 1] = (value >> 8) & 0xFF; row[0 + 2] = row[3 + 2] = row[next_row + 2] = row[next_row + 3 + 2] = (value >> 16) & 0xFF; row += 2 * 3; L = *lum; lum += 2; value = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); row[0 + 0] = row[3 + 0] = row[next_row + 0] = row[next_row + 3 + 0] = (value) & 0xFF; row[0 + 1] = row[3 + 1] = row[next_row + 1] = row[next_row + 3 + 1] = (value >> 8) & 0xFF; row[0 + 2] = row[3 + 2] = row[next_row + 2] = row[next_row + 3 + 2] = (value >> 16) & 0xFF; row += 2 * 3; } row += next_row; } } static void Color32DitherYUY2Mod2X(int *colortab, Uint32 * rgb_2_pix, unsigned char *lum, unsigned char *cr, unsigned char *cb, unsigned char *out, int rows, int cols, int mod) { unsigned int *row = (unsigned int *) out; const int next_row = cols * 2 + mod; int x, y; int cr_r; int crb_g; int cb_b; int cols_2 = cols / 2; mod += mod; y = rows; while (y--) { x = cols_2; while (x--) { register int L; cr_r = 0 * 768 + 256 + colortab[*cr + 0 * 256]; crb_g = 1 * 768 + 256 + colortab[*cr + 1 * 256] + colortab[*cb + 2 * 256]; cb_b = 2 * 768 + 256 + colortab[*cb + 3 * 256]; cr += 4; cb += 4; L = *lum; lum += 2; row[0] = row[1] = row[next_row] = row[next_row + 1] = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); row += 2; L = *lum; lum += 2; row[0] = row[1] = row[next_row] = row[next_row + 1] = (rgb_2_pix[L + cr_r] | rgb_2_pix[L + crb_g] | rgb_2_pix[L + cb_b]); row += 2; } row += next_row; } } /* * How many 1 bits are there in the Uint32. * Low performance, do not call often. */ static int number_of_bits_set(Uint32 a) { if (!a) return 0; if (a & 1) return 1 + number_of_bits_set(a >> 1); return (number_of_bits_set(a >> 1)); } /* * How many 0 bits are there at least significant end of Uint32. * Low performance, do not call often. */ static int free_bits_at_bottom(Uint32 a) { /* assume char is 8 bits */ if (!a) return sizeof(Uint32) * 8; if (((Sint32) a) & 1l) return 0; return 1 + free_bits_at_bottom(a >> 1); } static int SDL_SW_SetupYUVDisplay(SDL_SW_YUVTexture * swdata, Uint32 target_format) { Uint32 *r_2_pix_alloc; Uint32 *g_2_pix_alloc; Uint32 *b_2_pix_alloc; int i; int bpp; Uint32 Rmask, Gmask, Bmask, Amask; if (!SDL_PixelFormatEnumToMasks (target_format, &bpp, &Rmask, &Gmask, &Bmask, &Amask) || bpp < 15) { SDL_SetError("Unsupported YUV destination format"); return -1; } swdata->target_format = target_format; r_2_pix_alloc = &swdata->rgb_2_pix[0 * 768]; g_2_pix_alloc = &swdata->rgb_2_pix[1 * 768]; b_2_pix_alloc = &swdata->rgb_2_pix[2 * 768]; /* * Set up entries 0-255 in rgb-to-pixel value tables. */ for (i = 0; i < 256; ++i) { r_2_pix_alloc[i + 256] = i >> (8 - number_of_bits_set(Rmask)); r_2_pix_alloc[i + 256] <<= free_bits_at_bottom(Rmask); r_2_pix_alloc[i + 256] |= Amask; g_2_pix_alloc[i + 256] = i >> (8 - number_of_bits_set(Gmask)); g_2_pix_alloc[i + 256] <<= free_bits_at_bottom(Gmask); g_2_pix_alloc[i + 256] |= Amask; b_2_pix_alloc[i + 256] = i >> (8 - number_of_bits_set(Bmask)); b_2_pix_alloc[i + 256] <<= free_bits_at_bottom(Bmask); b_2_pix_alloc[i + 256] |= Amask; } /* * If we have 16-bit output depth, then we double the value * in the top word. This means that we can write out both * pixels in the pixel doubling mode with one op. It is * harmless in the normal case as storing a 32-bit value * through a short pointer will lose the top bits anyway. */ if (SDL_BYTESPERPIXEL(target_format) == 2) { for (i = 0; i < 256; ++i) { r_2_pix_alloc[i + 256] |= (r_2_pix_alloc[i + 256]) << 16; g_2_pix_alloc[i + 256] |= (g_2_pix_alloc[i + 256]) << 16; b_2_pix_alloc[i + 256] |= (b_2_pix_alloc[i + 256]) << 16; } } /* * Spread out the values we have to the rest of the array so that * we do not need to check for overflow. */ for (i = 0; i < 256; ++i) { r_2_pix_alloc[i] = r_2_pix_alloc[256]; r_2_pix_alloc[i + 512] = r_2_pix_alloc[511]; g_2_pix_alloc[i] = g_2_pix_alloc[256]; g_2_pix_alloc[i + 512] = g_2_pix_alloc[511]; b_2_pix_alloc[i] = b_2_pix_alloc[256]; b_2_pix_alloc[i + 512] = b_2_pix_alloc[511]; } /* You have chosen wisely... */ switch (swdata->format) { case SDL_PIXELFORMAT_YV12: case SDL_PIXELFORMAT_IYUV: if (SDL_BYTESPERPIXEL(target_format) == 2) { #if (__GNUC__ > 2) && defined(__i386__) && __OPTIMIZE__ && SDL_ASSEMBLY_ROUTINES /* inline assembly functions */ if (SDL_HasMMX() && (Rmask == 0xF800) && (Gmask == 0x07E0) && (Bmask == 0x001F) && (swdata->w & 15) == 0) { /*printf("Using MMX 16-bit 565 dither\n");*/ swdata->Display1X = Color565DitherYV12MMX1X; } else { /*printf("Using C 16-bit dither\n");*/ swdata->Display1X = Color16DitherYV12Mod1X; } #else swdata->Display1X = Color16DitherYV12Mod1X; #endif swdata->Display2X = Color16DitherYV12Mod2X; } if (SDL_BYTESPERPIXEL(target_format) == 3) { swdata->Display1X = Color24DitherYV12Mod1X; swdata->Display2X = Color24DitherYV12Mod2X; } if (SDL_BYTESPERPIXEL(target_format) == 4) { #if (__GNUC__ > 2) && defined(__i386__) && __OPTIMIZE__ && SDL_ASSEMBLY_ROUTINES /* inline assembly functions */ if (SDL_HasMMX() && (Rmask == 0x00FF0000) && (Gmask == 0x0000FF00) && (Bmask == 0x000000FF) && (swdata->w & 15) == 0) { /*printf("Using MMX 32-bit dither\n");*/ swdata->Display1X = ColorRGBDitherYV12MMX1X; } else { /*printf("Using C 32-bit dither\n");*/ swdata->Display1X = Color32DitherYV12Mod1X; } #else swdata->Display1X = Color32DitherYV12Mod1X; #endif swdata->Display2X = Color32DitherYV12Mod2X; } break; case SDL_PIXELFORMAT_YUY2: case SDL_PIXELFORMAT_UYVY: case SDL_PIXELFORMAT_YVYU: if (SDL_BYTESPERPIXEL(target_format) == 2) { swdata->Display1X = Color16DitherYUY2Mod1X; swdata->Display2X = Color16DitherYUY2Mod2X; } if (SDL_BYTESPERPIXEL(target_format) == 3) { swdata->Display1X = Color24DitherYUY2Mod1X; swdata->Display2X = Color24DitherYUY2Mod2X; } if (SDL_BYTESPERPIXEL(target_format) == 4) { swdata->Display1X = Color32DitherYUY2Mod1X; swdata->Display2X = Color32DitherYUY2Mod2X; } break; default: /* We should never get here (caught above) */ break; } if (swdata->display) { SDL_FreeSurface(swdata->display); swdata->display = NULL; } return 0; } SDL_SW_YUVTexture * SDL_SW_CreateYUVTexture(Uint32 format, int w, int h) { SDL_SW_YUVTexture *swdata; int *Cr_r_tab; int *Cr_g_tab; int *Cb_g_tab; int *Cb_b_tab; int i; int CR, CB; swdata = (SDL_SW_YUVTexture *) SDL_calloc(1, sizeof(*swdata)); if (!swdata) { SDL_OutOfMemory(); return NULL; } switch (format) { case SDL_PIXELFORMAT_YV12: case SDL_PIXELFORMAT_IYUV: case SDL_PIXELFORMAT_YUY2: case SDL_PIXELFORMAT_UYVY: case SDL_PIXELFORMAT_YVYU: break; default: SDL_SW_DestroyYUVTexture(swdata); SDL_SetError("Unsupported YUV format"); return NULL; } swdata->format = format; swdata->target_format = SDL_PIXELFORMAT_UNKNOWN; swdata->w = w; swdata->h = h; swdata->pixels = (Uint8 *) SDL_malloc(w * h * 2); swdata->colortab = (int *) SDL_malloc(4 * 256 * sizeof(int)); swdata->rgb_2_pix = (Uint32 *) SDL_malloc(3 * 768 * sizeof(Uint32)); if (!swdata->pixels || !swdata->colortab || !swdata->rgb_2_pix) { SDL_OutOfMemory(); SDL_SW_DestroyYUVTexture(swdata); return NULL; } /* Generate the tables for the display surface */ Cr_r_tab = &swdata->colortab[0 * 256]; Cr_g_tab = &swdata->colortab[1 * 256]; Cb_g_tab = &swdata->colortab[2 * 256]; Cb_b_tab = &swdata->colortab[3 * 256]; for (i = 0; i < 256; i++) { /* Gamma correction (luminescence table) and chroma correction would be done here. See the Berkeley mpeg_play sources. */ CB = CR = (i - 128); Cr_r_tab[i] = (int) ((0.419 / 0.299) * CR); Cr_g_tab[i] = (int) (-(0.299 / 0.419) * CR); Cb_g_tab[i] = (int) (-(0.114 / 0.331) * CB); Cb_b_tab[i] = (int) ((0.587 / 0.331) * CB); } /* Find the pitch and offset values for the overlay */ switch (format) { case SDL_PIXELFORMAT_YV12: case SDL_PIXELFORMAT_IYUV: swdata->pitches[0] = w; swdata->pitches[1] = swdata->pitches[0] / 2; swdata->pitches[2] = swdata->pitches[0] / 2; swdata->planes[0] = swdata->pixels; swdata->planes[1] = swdata->planes[0] + swdata->pitches[0] * h; swdata->planes[2] = swdata->planes[1] + swdata->pitches[1] * h / 2; break; case SDL_PIXELFORMAT_YUY2: case SDL_PIXELFORMAT_UYVY: case SDL_PIXELFORMAT_YVYU: swdata->pitches[0] = w * 2; swdata->planes[0] = swdata->pixels; break; default: /* We should never get here (caught above) */ break; } /* We're all done.. */ return (swdata); } int SDL_SW_QueryYUVTexturePixels(SDL_SW_YUVTexture * swdata, void **pixels, int *pitch) { *pixels = swdata->planes[0]; *pitch = swdata->pitches[0]; return 0; } int SDL_SW_UpdateYUVTexture(SDL_SW_YUVTexture * swdata, const SDL_Rect * rect, const void *pixels, int pitch) { switch (swdata->format) { case SDL_PIXELFORMAT_YV12: case SDL_PIXELFORMAT_IYUV: if (rect->x == 0 && rect->y == 0 && rect->w == swdata->w && rect->h == swdata->h) { SDL_memcpy(swdata->pixels, pixels, (swdata->h * swdata->w) + (swdata->h * swdata->w) / 2); } else { Uint8 *src, *dst; int row; size_t length; /* Copy the Y plane */ src = (Uint8 *) pixels; dst = swdata->pixels + rect->y * swdata->w + rect->x; length = rect->w; for (row = 0; row < rect->h; ++row) { SDL_memcpy(dst, src, length); src += pitch; dst += swdata->w; } /* Copy the next plane */ src = (Uint8 *) pixels + rect->h * pitch; dst = swdata->pixels + swdata->h * swdata->w; dst += rect->y/2 * swdata->w/2 + rect->x/2; length = rect->w / 2; for (row = 0; row < rect->h/2; ++row) { SDL_memcpy(dst, src, length); src += pitch/2; dst += swdata->w/2; } /* Copy the next plane */ src = (Uint8 *) pixels + rect->h * pitch + (rect->h * pitch) / 4; dst = swdata->pixels + swdata->h * swdata->w + (swdata->h * swdata->w) / 4; dst += rect->y/2 * swdata->w/2 + rect->x/2; length = rect->w / 2; for (row = 0; row < rect->h/2; ++row) { SDL_memcpy(dst, src, length); src += pitch/2; dst += swdata->w/2; } } break; case SDL_PIXELFORMAT_YUY2: case SDL_PIXELFORMAT_UYVY: case SDL_PIXELFORMAT_YVYU: { Uint8 *src, *dst; int row; size_t length; src = (Uint8 *) pixels; dst = swdata->planes[0] + rect->y * swdata->pitches[0] + rect->x * 2; length = rect->w * 2; for (row = 0; row < rect->h; ++row) { SDL_memcpy(dst, src, length); src += pitch; dst += swdata->pitches[0]; } } break; } return 0; } int SDL_SW_LockYUVTexture(SDL_SW_YUVTexture * swdata, const SDL_Rect * rect, void **pixels, int *pitch) { switch (swdata->format) { case SDL_PIXELFORMAT_YV12: case SDL_PIXELFORMAT_IYUV: if (rect && (rect->x != 0 || rect->y != 0 || rect->w != swdata->w || rect->h != swdata->h)) { SDL_SetError ("YV12 and IYUV textures only support full surface locks"); return -1; } break; } *pixels = swdata->planes[0] + rect->y * swdata->pitches[0] + rect->x * 2; *pitch = swdata->pitches[0]; return 0; } void SDL_SW_UnlockYUVTexture(SDL_SW_YUVTexture * swdata) { } int SDL_SW_CopyYUVToRGB(SDL_SW_YUVTexture * swdata, const SDL_Rect * srcrect, Uint32 target_format, int w, int h, void *pixels, int pitch) { int stretch; int scale_2x; Uint8 *lum, *Cr, *Cb; int mod; /* Make sure we're set up to display in the desired format */ if (target_format != swdata->target_format) { if (SDL_SW_SetupYUVDisplay(swdata, target_format) < 0) { return -1; } } stretch = 0; scale_2x = 0; if (srcrect->x || srcrect->y || srcrect->w < swdata->w || srcrect->h < swdata->h) { /* The source rectangle has been clipped. Using a scratch surface is easier than adding clipped source support to all the blitters, plus that would slow them down in the general unclipped case. */ stretch = 1; } else if ((srcrect->w != w) || (srcrect->h != h)) { if ((w == 2 * srcrect->w) && (h == 2 * srcrect->h)) { scale_2x = 1; } else { stretch = 1; } } if (stretch) { int bpp; Uint32 Rmask, Gmask, Bmask, Amask; if (swdata->display) { swdata->display->w = w; swdata->display->h = h; swdata->display->pixels = pixels; swdata->display->pitch = pitch; } else { /* This must have succeeded in SDL_SW_SetupYUVDisplay() earlier */ SDL_PixelFormatEnumToMasks(target_format, &bpp, &Rmask, &Gmask, &Bmask, &Amask); swdata->display = SDL_CreateRGBSurfaceFrom(pixels, w, h, bpp, pitch, Rmask, Gmask, Bmask, Amask); if (!swdata->display) { return (-1); } } if (!swdata->stretch) { /* This must have succeeded in SDL_SW_SetupYUVDisplay() earlier */ SDL_PixelFormatEnumToMasks(target_format, &bpp, &Rmask, &Gmask, &Bmask, &Amask); swdata->stretch = SDL_CreateRGBSurface(0, swdata->w, swdata->h, bpp, Rmask, Gmask, Bmask, Amask); if (!swdata->stretch) { return (-1); } } pixels = swdata->stretch->pixels; pitch = swdata->stretch->pitch; } switch (swdata->format) { case SDL_PIXELFORMAT_YV12: lum = swdata->planes[0]; Cr = swdata->planes[1]; Cb = swdata->planes[2]; break; case SDL_PIXELFORMAT_IYUV: lum = swdata->planes[0]; Cr = swdata->planes[2]; Cb = swdata->planes[1]; break; case SDL_PIXELFORMAT_YUY2: lum = swdata->planes[0]; Cr = lum + 3; Cb = lum + 1; break; case SDL_PIXELFORMAT_UYVY: lum = swdata->planes[0] + 1; Cr = lum + 1; Cb = lum - 1; break; case SDL_PIXELFORMAT_YVYU: lum = swdata->planes[0]; Cr = lum + 1; Cb = lum + 3; break; default: SDL_SetError("Unsupported YUV format in copy"); return (-1); } mod = (pitch / SDL_BYTESPERPIXEL(target_format)); if (scale_2x) { mod -= (swdata->w * 2); swdata->Display2X(swdata->colortab, swdata->rgb_2_pix, lum, Cr, Cb, pixels, swdata->h, swdata->w, mod); } else { mod -= swdata->w; swdata->Display1X(swdata->colortab, swdata->rgb_2_pix, lum, Cr, Cb, pixels, swdata->h, swdata->w, mod); } if (stretch) { SDL_Rect rect = *srcrect; SDL_SoftStretch(swdata->stretch, &rect, swdata->display, NULL); } return 0; } void SDL_SW_DestroyYUVTexture(SDL_SW_YUVTexture * swdata) { if (swdata) { if (swdata->pixels) { SDL_free(swdata->pixels); } if (swdata->colortab) { SDL_free(swdata->colortab); } if (swdata->rgb_2_pix) { SDL_free(swdata->rgb_2_pix); } if (swdata->stretch) { SDL_FreeSurface(swdata->stretch); } if (swdata->display) { SDL_FreeSurface(swdata->display); } SDL_free(swdata); } } /* vi: set ts=4 sw=4 expandtab: */