src/libm/e_sqrt.c
author Sam Lantinga <slouken@libsdl.org>
Fri, 26 Aug 2016 12:18:08 -0700
changeset 10226 cb13d22b7f09
parent 6044 35448a5ea044
child 11683 48bcba563d9c
permissions -rw-r--r--
Added SDL_PrivateJoystickAdded() and SDL_PrivateJoystickRemoved()
Updated the removal code to iterate over all joystick add messages instead of just the first one.
slouken@2756
     1
/* @(#)e_sqrt.c 5.1 93/09/24 */
slouken@2756
     2
/*
slouken@2756
     3
 * ====================================================
slouken@2756
     4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
slouken@2756
     5
 *
slouken@2756
     6
 * Developed at SunPro, a Sun Microsystems, Inc. business.
slouken@2756
     7
 * Permission to use, copy, modify, and distribute this
slouken@2756
     8
 * software is freely granted, provided that this notice
slouken@2756
     9
 * is preserved.
slouken@2756
    10
 * ====================================================
slouken@2756
    11
 */
slouken@2756
    12
slouken@2756
    13
#if defined(LIBM_SCCS) && !defined(lint)
slouken@3162
    14
static const char rcsid[] =
slouken@3162
    15
    "$NetBSD: e_sqrt.c,v 1.8 1995/05/10 20:46:17 jtc Exp $";
slouken@2756
    16
#endif
slouken@2756
    17
slouken@2756
    18
/* __ieee754_sqrt(x)
slouken@2756
    19
 * Return correctly rounded sqrt.
slouken@2756
    20
 *           ------------------------------------------
slouken@2756
    21
 *	     |  Use the hardware sqrt if you have one |
slouken@2756
    22
 *           ------------------------------------------
slouken@2756
    23
 * Method:
slouken@2756
    24
 *   Bit by bit method using integer arithmetic. (Slow, but portable)
slouken@2756
    25
 *   1. Normalization
slouken@2756
    26
 *	Scale x to y in [1,4) with even powers of 2:
slouken@2756
    27
 *	find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
slouken@2756
    28
 *		sqrt(x) = 2^k * sqrt(y)
slouken@2756
    29
 *   2. Bit by bit computation
slouken@2756
    30
 *	Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
slouken@2756
    31
 *	     i							 0
slouken@2756
    32
 *                                     i+1         2
slouken@2756
    33
 *	    s  = 2*q , and	y  =  2   * ( y - q  ).		(1)
slouken@2756
    34
 *	     i      i            i                 i
slouken@2756
    35
 *
slouken@2756
    36
 *	To compute q    from q , one checks whether
slouken@2756
    37
 *		    i+1       i
slouken@2756
    38
 *
slouken@2756
    39
 *			      -(i+1) 2
slouken@2756
    40
 *			(q + 2      ) <= y.			(2)
slouken@2756
    41
 *     			  i
slouken@2756
    42
 *							      -(i+1)
slouken@2756
    43
 *	If (2) is false, then q   = q ; otherwise q   = q  + 2      .
slouken@2756
    44
 *		 	       i+1   i             i+1   i
slouken@2756
    45
 *
slouken@2756
    46
 *	With some algebric manipulation, it is not difficult to see
slouken@2756
    47
 *	that (2) is equivalent to
slouken@2756
    48
 *                             -(i+1)
slouken@2756
    49
 *			s  +  2       <= y			(3)
slouken@2756
    50
 *			 i                i
slouken@2756
    51
 *
slouken@2756
    52
 *	The advantage of (3) is that s  and y  can be computed by
slouken@2756
    53
 *				      i      i
slouken@2756
    54
 *	the following recurrence formula:
slouken@2756
    55
 *	    if (3) is false
slouken@2756
    56
 *
slouken@2756
    57
 *	    s     =  s  ,	y    = y   ;			(4)
slouken@2756
    58
 *	     i+1      i		 i+1    i
slouken@2756
    59
 *
slouken@2756
    60
 *	    otherwise,
slouken@2756
    61
 *                         -i                     -(i+1)
slouken@2756
    62
 *	    s	  =  s  + 2  ,  y    = y  -  s  - 2  		(5)
slouken@2756
    63
 *           i+1      i          i+1    i     i
slouken@2756
    64
 *
slouken@2756
    65
 *	One may easily use induction to prove (4) and (5).
slouken@2756
    66
 *	Note. Since the left hand side of (3) contain only i+2 bits,
slouken@2756
    67
 *	      it does not necessary to do a full (53-bit) comparison
slouken@2756
    68
 *	      in (3).
slouken@2756
    69
 *   3. Final rounding
slouken@2756
    70
 *	After generating the 53 bits result, we compute one more bit.
slouken@2756
    71
 *	Together with the remainder, we can decide whether the
slouken@2756
    72
 *	result is exact, bigger than 1/2ulp, or less than 1/2ulp
slouken@2756
    73
 *	(it will never equal to 1/2ulp).
slouken@2756
    74
 *	The rounding mode can be detected by checking whether
slouken@2756
    75
 *	huge + tiny is equal to huge, and whether huge - tiny is
slouken@2756
    76
 *	equal to huge for some floating point number "huge" and "tiny".
slouken@2756
    77
 *
slouken@2756
    78
 * Special cases:
slouken@2756
    79
 *	sqrt(+-0) = +-0 	... exact
slouken@2756
    80
 *	sqrt(inf) = inf
slouken@2756
    81
 *	sqrt(-ve) = NaN		... with invalid signal
slouken@2756
    82
 *	sqrt(NaN) = NaN		... with invalid signal for signaling NaN
slouken@2756
    83
 *
slouken@2756
    84
 * Other methods : see the appended file at the end of the program below.
slouken@2756
    85
 *---------------
slouken@2756
    86
 */
slouken@2756
    87
slouken@6044
    88
#include "math_libm.h"
slouken@2756
    89
#include "math_private.h"
slouken@2756
    90
slouken@2756
    91
#ifdef __STDC__
slouken@2756
    92
static const double one = 1.0, tiny = 1.0e-300;
slouken@2756
    93
#else
slouken@2756
    94
static double one = 1.0, tiny = 1.0e-300;
slouken@2756
    95
#endif
slouken@2756
    96
slouken@2756
    97
#ifdef __STDC__
slouken@2756
    98
double attribute_hidden
slouken@2756
    99
__ieee754_sqrt(double x)
slouken@2756
   100
#else
slouken@2756
   101
double attribute_hidden
slouken@2756
   102
__ieee754_sqrt(x)
slouken@2756
   103
     double x;
slouken@2756
   104
#endif
slouken@2756
   105
{
slouken@2756
   106
    double z;
slouken@2756
   107
    int32_t sign = (int) 0x80000000;
slouken@2756
   108
    int32_t ix0, s0, q, m, t, i;
slouken@2756
   109
    u_int32_t r, t1, s1, ix1, q1;
slouken@2756
   110
slouken@2756
   111
    EXTRACT_WORDS(ix0, ix1, x);
slouken@2756
   112
slouken@2756
   113
    /* take care of Inf and NaN */
slouken@2756
   114
    if ((ix0 & 0x7ff00000) == 0x7ff00000) {
slouken@2756
   115
        return x * x + x;       /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
slouken@2756
   116
                                   sqrt(-inf)=sNaN */
slouken@2756
   117
    }
slouken@2756
   118
    /* take care of zero */
slouken@2756
   119
    if (ix0 <= 0) {
slouken@2756
   120
        if (((ix0 & (~sign)) | ix1) == 0)
slouken@2756
   121
            return x;           /* sqrt(+-0) = +-0 */
slouken@2756
   122
        else if (ix0 < 0)
slouken@2756
   123
            return (x - x) / (x - x);   /* sqrt(-ve) = sNaN */
slouken@2756
   124
    }
slouken@2756
   125
    /* normalize x */
slouken@2756
   126
    m = (ix0 >> 20);
slouken@2756
   127
    if (m == 0) {               /* subnormal x */
slouken@2756
   128
        while (ix0 == 0) {
slouken@2756
   129
            m -= 21;
slouken@2756
   130
            ix0 |= (ix1 >> 11);
slouken@2756
   131
            ix1 <<= 21;
slouken@2756
   132
        }
slouken@2756
   133
        for (i = 0; (ix0 & 0x00100000) == 0; i++)
slouken@2756
   134
            ix0 <<= 1;
slouken@2756
   135
        m -= i - 1;
slouken@2756
   136
        ix0 |= (ix1 >> (32 - i));
slouken@2756
   137
        ix1 <<= i;
slouken@2756
   138
    }
slouken@2756
   139
    m -= 1023;                  /* unbias exponent */
slouken@2756
   140
    ix0 = (ix0 & 0x000fffff) | 0x00100000;
slouken@2756
   141
    if (m & 1) {                /* odd m, double x to make it even */
slouken@2756
   142
        ix0 += ix0 + ((ix1 & sign) >> 31);
slouken@2756
   143
        ix1 += ix1;
slouken@2756
   144
    }
slouken@2756
   145
    m >>= 1;                    /* m = [m/2] */
slouken@2756
   146
slouken@2756
   147
    /* generate sqrt(x) bit by bit */
slouken@2756
   148
    ix0 += ix0 + ((ix1 & sign) >> 31);
slouken@2756
   149
    ix1 += ix1;
slouken@2756
   150
    q = q1 = s0 = s1 = 0;       /* [q,q1] = sqrt(x) */
slouken@2756
   151
    r = 0x00200000;             /* r = moving bit from right to left */
slouken@2756
   152
slouken@2756
   153
    while (r != 0) {
slouken@2756
   154
        t = s0 + r;
slouken@2756
   155
        if (t <= ix0) {
slouken@2756
   156
            s0 = t + r;
slouken@2756
   157
            ix0 -= t;
slouken@2756
   158
            q += r;
slouken@2756
   159
        }
slouken@2756
   160
        ix0 += ix0 + ((ix1 & sign) >> 31);
slouken@2756
   161
        ix1 += ix1;
slouken@2756
   162
        r >>= 1;
slouken@2756
   163
    }
slouken@2756
   164
slouken@2756
   165
    r = sign;
slouken@2756
   166
    while (r != 0) {
slouken@2756
   167
        t1 = s1 + r;
slouken@2756
   168
        t = s0;
slouken@2756
   169
        if ((t < ix0) || ((t == ix0) && (t1 <= ix1))) {
slouken@2756
   170
            s1 = t1 + r;
slouken@2756
   171
            if (((t1 & sign) == sign) && (s1 & sign) == 0)
slouken@2756
   172
                s0 += 1;
slouken@2756
   173
            ix0 -= t;
slouken@2756
   174
            if (ix1 < t1)
slouken@2756
   175
                ix0 -= 1;
slouken@2756
   176
            ix1 -= t1;
slouken@2756
   177
            q1 += r;
slouken@2756
   178
        }
slouken@2756
   179
        ix0 += ix0 + ((ix1 & sign) >> 31);
slouken@2756
   180
        ix1 += ix1;
slouken@2756
   181
        r >>= 1;
slouken@2756
   182
    }
slouken@2756
   183
slouken@2756
   184
    /* use floating add to find out rounding direction */
slouken@2756
   185
    if ((ix0 | ix1) != 0) {
slouken@2756
   186
        z = one - tiny;         /* trigger inexact flag */
slouken@2756
   187
        if (z >= one) {
slouken@2756
   188
            z = one + tiny;
slouken@2756
   189
            if (q1 == (u_int32_t) 0xffffffff) {
slouken@2756
   190
                q1 = 0;
slouken@2756
   191
                q += 1;
slouken@2756
   192
            } else if (z > one) {
slouken@2756
   193
                if (q1 == (u_int32_t) 0xfffffffe)
slouken@2756
   194
                    q += 1;
slouken@2756
   195
                q1 += 2;
slouken@2756
   196
            } else
slouken@2756
   197
                q1 += (q1 & 1);
slouken@2756
   198
        }
slouken@2756
   199
    }
slouken@2756
   200
    ix0 = (q >> 1) + 0x3fe00000;
slouken@2756
   201
    ix1 = q1 >> 1;
slouken@2756
   202
    if ((q & 1) == 1)
slouken@2756
   203
        ix1 |= sign;
slouken@2756
   204
    ix0 += (m << 20);
slouken@2756
   205
    INSERT_WORDS(z, ix0, ix1);
slouken@2756
   206
    return z;
slouken@2756
   207
}
slouken@2756
   208
slouken@2756
   209
/*
slouken@2756
   210
Other methods  (use floating-point arithmetic)
slouken@2756
   211
-------------
slouken@2756
   212
(This is a copy of a drafted paper by Prof W. Kahan
slouken@2756
   213
and K.C. Ng, written in May, 1986)
slouken@2756
   214
slouken@2756
   215
	Two algorithms are given here to implement sqrt(x)
slouken@2756
   216
	(IEEE double precision arithmetic) in software.
slouken@2756
   217
	Both supply sqrt(x) correctly rounded. The first algorithm (in
slouken@2756
   218
	Section A) uses newton iterations and involves four divisions.
slouken@2756
   219
	The second one uses reciproot iterations to avoid division, but
slouken@2756
   220
	requires more multiplications. Both algorithms need the ability
slouken@2756
   221
	to chop results of arithmetic operations instead of round them,
slouken@2756
   222
	and the INEXACT flag to indicate when an arithmetic operation
slouken@2756
   223
	is executed exactly with no roundoff error, all part of the
slouken@2756
   224
	standard (IEEE 754-1985). The ability to perform shift, add,
slouken@2756
   225
	subtract and logical AND operations upon 32-bit words is needed
slouken@2756
   226
	too, though not part of the standard.
slouken@2756
   227
slouken@2756
   228
A.  sqrt(x) by Newton Iteration
slouken@2756
   229
slouken@2756
   230
   (1)	Initial approximation
slouken@2756
   231
slouken@2756
   232
	Let x0 and x1 be the leading and the trailing 32-bit words of
slouken@2756
   233
	a floating point number x (in IEEE double format) respectively
slouken@2756
   234
slouken@2756
   235
	    1    11		     52				  ...widths
slouken@2756
   236
	   ------------------------------------------------------
slouken@2756
   237
	x: |s|	  e     |	      f				|
slouken@2756
   238
	   ------------------------------------------------------
slouken@2756
   239
	      msb    lsb  msb				      lsb ...order
slouken@2756
   240
slouken@2756
   241
slouken@2756
   242
	     ------------------------  	     ------------------------
slouken@2756
   243
	x0:  |s|   e    |    f1     |	 x1: |          f2           |
slouken@2756
   244
	     ------------------------  	     ------------------------
slouken@2756
   245
slouken@2756
   246
	By performing shifts and subtracts on x0 and x1 (both regarded
slouken@2756
   247
	as integers), we obtain an 8-bit approximation of sqrt(x) as
slouken@2756
   248
	follows.
slouken@2756
   249
slouken@2756
   250
		k  := (x0>>1) + 0x1ff80000;
slouken@2756
   251
		y0 := k - T1[31&(k>>15)].	... y ~ sqrt(x) to 8 bits
slouken@2756
   252
	Here k is a 32-bit integer and T1[] is an integer array containing
slouken@2756
   253
	correction terms. Now magically the floating value of y (y's
slouken@2756
   254
	leading 32-bit word is y0, the value of its trailing word is 0)
slouken@2756
   255
	approximates sqrt(x) to almost 8-bit.
slouken@2756
   256
slouken@2756
   257
	Value of T1:
slouken@2756
   258
	static int T1[32]= {
slouken@2756
   259
	0,	1024,	3062,	5746,	9193,	13348,	18162,	23592,
slouken@2756
   260
	29598,	36145,	43202,	50740,	58733,	67158,	75992,	85215,
slouken@2756
   261
	83599,	71378,	60428,	50647,	41945,	34246,	27478,	21581,
slouken@2756
   262
	16499,	12183,	8588,	5674,	3403,	1742,	661,	130,};
slouken@2756
   263
slouken@2756
   264
    (2)	Iterative refinement
slouken@2756
   265
slouken@2756
   266
	Apply Heron's rule three times to y, we have y approximates
slouken@2756
   267
	sqrt(x) to within 1 ulp (Unit in the Last Place):
slouken@2756
   268
slouken@2756
   269
		y := (y+x/y)/2		... almost 17 sig. bits
slouken@2756
   270
		y := (y+x/y)/2		... almost 35 sig. bits
slouken@2756
   271
		y := y-(y-x/y)/2	... within 1 ulp
slouken@2756
   272
slouken@2756
   273
slouken@2756
   274
	Remark 1.
slouken@2756
   275
	    Another way to improve y to within 1 ulp is:
slouken@2756
   276
slouken@2756
   277
		y := (y+x/y)		... almost 17 sig. bits to 2*sqrt(x)
slouken@2756
   278
		y := y - 0x00100006	... almost 18 sig. bits to sqrt(x)
slouken@2756
   279
slouken@2756
   280
				2
slouken@2756
   281
			    (x-y )*y
slouken@2756
   282
		y := y + 2* ----------	...within 1 ulp
slouken@2756
   283
			       2
slouken@2756
   284
			     3y  + x
slouken@2756
   285
slouken@2756
   286
slouken@2756
   287
	This formula has one division fewer than the one above; however,
slouken@2756
   288
	it requires more multiplications and additions. Also x must be
slouken@2756
   289
	scaled in advance to avoid spurious overflow in evaluating the
slouken@2756
   290
	expression 3y*y+x. Hence it is not recommended uless division
slouken@2756
   291
	is slow. If division is very slow, then one should use the
slouken@2756
   292
	reciproot algorithm given in section B.
slouken@2756
   293
slouken@2756
   294
    (3) Final adjustment
slouken@2756
   295
slouken@2756
   296
	By twiddling y's last bit it is possible to force y to be
slouken@2756
   297
	correctly rounded according to the prevailing rounding mode
slouken@2756
   298
	as follows. Let r and i be copies of the rounding mode and
slouken@2756
   299
	inexact flag before entering the square root program. Also we
slouken@2756
   300
	use the expression y+-ulp for the next representable floating
slouken@2756
   301
	numbers (up and down) of y. Note that y+-ulp = either fixed
slouken@2756
   302
	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
slouken@2756
   303
	mode.
slouken@2756
   304
slouken@2756
   305
		I := FALSE;	... reset INEXACT flag I
slouken@2756
   306
		R := RZ;	... set rounding mode to round-toward-zero
slouken@2756
   307
		z := x/y;	... chopped quotient, possibly inexact
slouken@2756
   308
		If(not I) then {	... if the quotient is exact
slouken@2756
   309
		    if(z=y) {
slouken@2756
   310
		        I := i;	 ... restore inexact flag
slouken@2756
   311
		        R := r;  ... restore rounded mode
slouken@2756
   312
		        return sqrt(x):=y.
slouken@2756
   313
		    } else {
slouken@2756
   314
			z := z - ulp;	... special rounding
slouken@2756
   315
		    }
slouken@2756
   316
		}
slouken@2756
   317
		i := TRUE;		... sqrt(x) is inexact
slouken@2756
   318
		If (r=RN) then z=z+ulp	... rounded-to-nearest
slouken@2756
   319
		If (r=RP) then {	... round-toward-+inf
slouken@2756
   320
		    y = y+ulp; z=z+ulp;
slouken@2756
   321
		}
slouken@2756
   322
		y := y+z;		... chopped sum
slouken@2756
   323
		y0:=y0-0x00100000;	... y := y/2 is correctly rounded.
slouken@2756
   324
	        I := i;	 		... restore inexact flag
slouken@2756
   325
	        R := r;  		... restore rounded mode
slouken@2756
   326
	        return sqrt(x):=y.
slouken@2756
   327
slouken@2756
   328
    (4)	Special cases
slouken@2756
   329
slouken@2756
   330
	Square root of +inf, +-0, or NaN is itself;
slouken@2756
   331
	Square root of a negative number is NaN with invalid signal.
slouken@2756
   332
slouken@2756
   333
slouken@2756
   334
B.  sqrt(x) by Reciproot Iteration
slouken@2756
   335
slouken@2756
   336
   (1)	Initial approximation
slouken@2756
   337
slouken@2756
   338
	Let x0 and x1 be the leading and the trailing 32-bit words of
slouken@2756
   339
	a floating point number x (in IEEE double format) respectively
slouken@2756
   340
	(see section A). By performing shifs and subtracts on x0 and y0,
slouken@2756
   341
	we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
slouken@2756
   342
slouken@2756
   343
	    k := 0x5fe80000 - (x0>>1);
slouken@2756
   344
	    y0:= k - T2[63&(k>>14)].	... y ~ 1/sqrt(x) to 7.8 bits
slouken@2756
   345
slouken@2756
   346
	Here k is a 32-bit integer and T2[] is an integer array
slouken@2756
   347
	containing correction terms. Now magically the floating
slouken@2756
   348
	value of y (y's leading 32-bit word is y0, the value of
slouken@2756
   349
	its trailing word y1 is set to zero) approximates 1/sqrt(x)
slouken@2756
   350
	to almost 7.8-bit.
slouken@2756
   351
slouken@2756
   352
	Value of T2:
slouken@2756
   353
	static int T2[64]= {
slouken@2756
   354
	0x1500,	0x2ef8,	0x4d67,	0x6b02,	0x87be,	0xa395,	0xbe7a,	0xd866,
slouken@2756
   355
	0xf14a,	0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
slouken@2756
   356
	0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
slouken@2756
   357
	0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
slouken@2756
   358
	0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
slouken@2756
   359
	0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
slouken@2756
   360
	0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
slouken@2756
   361
	0x1527f,0x1334a,0x11051,0xe951,	0xbe01,	0x8e0d,	0x5924,	0x1edd,};
slouken@2756
   362
slouken@2756
   363
    (2)	Iterative refinement
slouken@2756
   364
slouken@2756
   365
	Apply Reciproot iteration three times to y and multiply the
slouken@2756
   366
	result by x to get an approximation z that matches sqrt(x)
slouken@2756
   367
	to about 1 ulp. To be exact, we will have
slouken@2756
   368
		-1ulp < sqrt(x)-z<1.0625ulp.
slouken@2756
   369
slouken@2756
   370
	... set rounding mode to Round-to-nearest
slouken@2756
   371
	   y := y*(1.5-0.5*x*y*y)	... almost 15 sig. bits to 1/sqrt(x)
slouken@2756
   372
	   y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
slouken@2756
   373
	... special arrangement for better accuracy
slouken@2756
   374
	   z := x*y			... 29 bits to sqrt(x), with z*y<1
slouken@2756
   375
	   z := z + 0.5*z*(1-z*y)	... about 1 ulp to sqrt(x)
slouken@2756
   376
slouken@2756
   377
	Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
slouken@2756
   378
	(a) the term z*y in the final iteration is always less than 1;
slouken@2756
   379
	(b) the error in the final result is biased upward so that
slouken@2756
   380
		-1 ulp < sqrt(x) - z < 1.0625 ulp
slouken@2756
   381
	    instead of |sqrt(x)-z|<1.03125ulp.
slouken@2756
   382
slouken@2756
   383
    (3)	Final adjustment
slouken@2756
   384
slouken@2756
   385
	By twiddling y's last bit it is possible to force y to be
slouken@2756
   386
	correctly rounded according to the prevailing rounding mode
slouken@2756
   387
	as follows. Let r and i be copies of the rounding mode and
slouken@2756
   388
	inexact flag before entering the square root program. Also we
slouken@2756
   389
	use the expression y+-ulp for the next representable floating
slouken@2756
   390
	numbers (up and down) of y. Note that y+-ulp = either fixed
slouken@2756
   391
	point y+-1, or multiply y by nextafter(1,+-inf) in chopped
slouken@2756
   392
	mode.
slouken@2756
   393
slouken@2756
   394
	R := RZ;		... set rounding mode to round-toward-zero
slouken@2756
   395
	switch(r) {
slouken@2756
   396
	    case RN:		... round-to-nearest
slouken@2756
   397
	       if(x<= z*(z-ulp)...chopped) z = z - ulp; else
slouken@2756
   398
	       if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
slouken@2756
   399
	       break;
slouken@2756
   400
	    case RZ:case RM:	... round-to-zero or round-to--inf
slouken@2756
   401
	       R:=RP;		... reset rounding mod to round-to-+inf
slouken@2756
   402
	       if(x<z*z ... rounded up) z = z - ulp; else
slouken@2756
   403
	       if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
slouken@2756
   404
	       break;
slouken@2756
   405
	    case RP:		... round-to-+inf
slouken@2756
   406
	       if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
slouken@2756
   407
	       if(x>z*z ...chopped) z = z+ulp;
slouken@2756
   408
	       break;
slouken@2756
   409
	}
slouken@2756
   410
slouken@2756
   411
	Remark 3. The above comparisons can be done in fixed point. For
slouken@2756
   412
	example, to compare x and w=z*z chopped, it suffices to compare
slouken@2756
   413
	x1 and w1 (the trailing parts of x and w), regarding them as
slouken@2756
   414
	two's complement integers.
slouken@2756
   415
slouken@2756
   416
	...Is z an exact square root?
slouken@2756
   417
	To determine whether z is an exact square root of x, let z1 be the
slouken@2756
   418
	trailing part of z, and also let x0 and x1 be the leading and
slouken@2756
   419
	trailing parts of x.
slouken@2756
   420
slouken@2756
   421
	If ((z1&0x03ffffff)!=0)	... not exact if trailing 26 bits of z!=0
slouken@2756
   422
	    I := 1;		... Raise Inexact flag: z is not exact
slouken@2756
   423
	else {
slouken@2756
   424
	    j := 1 - [(x0>>20)&1]	... j = logb(x) mod 2
slouken@2756
   425
	    k := z1 >> 26;		... get z's 25-th and 26-th
slouken@2756
   426
					    fraction bits
slouken@2756
   427
	    I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
slouken@2756
   428
	}
slouken@2756
   429
	R:= r		... restore rounded mode
slouken@2756
   430
	return sqrt(x):=z.
slouken@2756
   431
slouken@2756
   432
	If multiplication is cheaper then the foregoing red tape, the
slouken@2756
   433
	Inexact flag can be evaluated by
slouken@2756
   434
slouken@2756
   435
	    I := i;
slouken@2756
   436
	    I := (z*z!=x) or I.
slouken@2756
   437
slouken@2756
   438
	Note that z*z can overwrite I; this value must be sensed if it is
slouken@2756
   439
	True.
slouken@2756
   440
slouken@2756
   441
	Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
slouken@2756
   442
	zero.
slouken@2756
   443
slouken@2756
   444
		    --------------------
slouken@2756
   445
		z1: |        f2        |
slouken@2756
   446
		    --------------------
slouken@2756
   447
		bit 31		   bit 0
slouken@2756
   448
slouken@2756
   449
	Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
slouken@2756
   450
	or even of logb(x) have the following relations:
slouken@2756
   451
slouken@2756
   452
	-------------------------------------------------
slouken@2756
   453
	bit 27,26 of z1		bit 1,0 of x1	logb(x)
slouken@2756
   454
	-------------------------------------------------
slouken@2756
   455
	00			00		odd and even
slouken@2756
   456
	01			01		even
slouken@2756
   457
	10			10		odd
slouken@2756
   458
	10			00		even
slouken@2756
   459
	11			01		even
slouken@2756
   460
	-------------------------------------------------
slouken@2756
   461
slouken@2756
   462
    (4)	Special cases (see (4) of Section A).
slouken@2756
   463
slouken@2756
   464
 */