src/video/e_log.h
author Edgar Simo <bobbens@gmail.com>
Sun, 06 Jul 2008 17:06:37 +0000
branchgsoc2008_force_feedback
changeset 2498 ab567bd667bf
parent 1895 c121d94672cb
permissions -rw-r--r--
Fixed various mistakes in the doxygen.
slouken@1330
     1
/* @(#)e_log.c 5.1 93/09/24 */
slouken@1330
     2
/*
slouken@1330
     3
 * ====================================================
slouken@1330
     4
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
slouken@1330
     5
 *
slouken@1330
     6
 * Developed at SunPro, a Sun Microsystems, Inc. business.
slouken@1330
     7
 * Permission to use, copy, modify, and distribute this
slouken@1330
     8
 * software is freely granted, provided that this notice
slouken@1330
     9
 * is preserved.
slouken@1330
    10
 * ====================================================
slouken@1330
    11
 */
slouken@1330
    12
slouken@1330
    13
#if defined(LIBM_SCCS) && !defined(lint)
slouken@1330
    14
static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $";
slouken@1330
    15
#endif
slouken@1330
    16
slouken@1330
    17
/* __ieee754_log(x)
slouken@1330
    18
 * Return the logrithm of x
slouken@1330
    19
 *
slouken@1330
    20
 * Method :
slouken@1330
    21
 *   1. Argument Reduction: find k and f such that
slouken@1330
    22
 *			x = 2^k * (1+f),
slouken@1330
    23
 *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
slouken@1330
    24
 *
slouken@1330
    25
 *   2. Approximation of log(1+f).
slouken@1330
    26
 *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
slouken@1330
    27
 *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
slouken@1330
    28
 *	     	 = 2s + s*R
slouken@1330
    29
 *      We use a special Reme algorithm on [0,0.1716] to generate
slouken@1330
    30
 * 	a polynomial of degree 14 to approximate R The maximum error
slouken@1330
    31
 *	of this polynomial approximation is bounded by 2**-58.45. In
slouken@1330
    32
 *	other words,
slouken@1330
    33
 *		        2      4      6      8      10      12      14
slouken@1330
    34
 *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
slouken@1330
    35
 *  	(the values of Lg1 to Lg7 are listed in the program)
slouken@1330
    36
 *	and
slouken@1330
    37
 *	    |      2          14          |     -58.45
slouken@1330
    38
 *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
slouken@1330
    39
 *	    |                             |
slouken@1330
    40
 *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
slouken@1330
    41
 *	In order to guarantee error in log below 1ulp, we compute log
slouken@1330
    42
 *	by
slouken@1330
    43
 *		log(1+f) = f - s*(f - R)	(if f is not too large)
slouken@1330
    44
 *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
slouken@1330
    45
 *
slouken@1330
    46
 *	3. Finally,  log(x) = k*ln2 + log(1+f).
slouken@1330
    47
 *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
slouken@1330
    48
 *	   Here ln2 is split into two floating point number:
slouken@1330
    49
 *			ln2_hi + ln2_lo,
slouken@1330
    50
 *	   where n*ln2_hi is always exact for |n| < 2000.
slouken@1330
    51
 *
slouken@1330
    52
 * Special cases:
slouken@1330
    53
 *	log(x) is NaN with signal if x < 0 (including -INF) ;
slouken@1330
    54
 *	log(+INF) is +INF; log(0) is -INF with signal;
slouken@1330
    55
 *	log(NaN) is that NaN with no signal.
slouken@1330
    56
 *
slouken@1330
    57
 * Accuracy:
slouken@1330
    58
 *	according to an error analysis, the error is always less than
slouken@1330
    59
 *	1 ulp (unit in the last place).
slouken@1330
    60
 *
slouken@1330
    61
 * Constants:
slouken@1330
    62
 * The hexadecimal values are the intended ones for the following
slouken@1330
    63
 * constants. The decimal values may be used, provided that the
slouken@1330
    64
 * compiler will convert from decimal to binary accurately enough
slouken@1330
    65
 * to produce the hexadecimal values shown.
slouken@1330
    66
 */
slouken@1330
    67
slouken@1330
    68
/*#include "math.h"*/
slouken@1330
    69
#include "math_private.h"
slouken@1330
    70
slouken@1330
    71
#ifdef __STDC__
slouken@1330
    72
static const double
slouken@1330
    73
#else
slouken@1330
    74
static double
slouken@1330
    75
#endif
slouken@1895
    76
  ln2_hi = 6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
slouken@1895
    77
    ln2_lo = 1.90821492927058770002e-10,        /* 3dea39ef 35793c76 */
slouken@1895
    78
    Lg1 = 6.666666666666735130e-01,     /* 3FE55555 55555593 */
slouken@1895
    79
    Lg2 = 3.999999999940941908e-01,     /* 3FD99999 9997FA04 */
slouken@1895
    80
    Lg3 = 2.857142874366239149e-01,     /* 3FD24924 94229359 */
slouken@1895
    81
    Lg4 = 2.222219843214978396e-01,     /* 3FCC71C5 1D8E78AF */
slouken@1895
    82
    Lg5 = 1.818357216161805012e-01,     /* 3FC74664 96CB03DE */
slouken@1895
    83
    Lg6 = 1.531383769920937332e-01,     /* 3FC39A09 D078C69F */
slouken@1895
    84
    Lg7 = 1.479819860511658591e-01;     /* 3FC2F112 DF3E5244 */
slouken@1330
    85
slouken@1330
    86
#ifdef __STDC__
slouken@1895
    87
double
slouken@1895
    88
__ieee754_log(double x)
slouken@1330
    89
#else
slouken@1895
    90
double
slouken@1895
    91
__ieee754_log(x)
slouken@1895
    92
     double x;
slouken@1330
    93
#endif
slouken@1330
    94
{
slouken@1895
    95
    double hfsq, f, s, z, R, w, t1, t2, dk;
slouken@1895
    96
    int32_t k, hx, i, j;
slouken@1895
    97
    u_int32_t lx;
slouken@1330
    98
slouken@1895
    99
    EXTRACT_WORDS(hx, lx, x);
slouken@1330
   100
slouken@1895
   101
    k = 0;
slouken@1895
   102
    if (hx < 0x00100000) {      /* x < 2**-1022  */
slouken@1895
   103
        if (((hx & 0x7fffffff) | lx) == 0)
slouken@1895
   104
            return -two54 / zero;       /* log(+-0)=-inf */
slouken@1895
   105
        if (hx < 0)
slouken@1895
   106
            return (x - x) / zero;      /* log(-#) = NaN */
slouken@1895
   107
        k -= 54;
slouken@1895
   108
        x *= two54;             /* subnormal number, scale up x */
slouken@1895
   109
        GET_HIGH_WORD(hx, x);
slouken@1895
   110
    }
slouken@1895
   111
    if (hx >= 0x7ff00000)
slouken@1895
   112
        return x + x;
slouken@1895
   113
    k += (hx >> 20) - 1023;
slouken@1895
   114
    hx &= 0x000fffff;
slouken@1895
   115
    i = (hx + 0x95f64) & 0x100000;
slouken@1895
   116
    SET_HIGH_WORD(x, hx | (i ^ 0x3ff00000));    /* normalize x or x/2 */
slouken@1895
   117
    k += (i >> 20);
slouken@1895
   118
    f = x - 1.0;
slouken@1895
   119
    if ((0x000fffff & (2 + hx)) < 3) {  /* |f| < 2**-20 */
slouken@1895
   120
        if (f == zero) {
slouken@1895
   121
            if (k == 0)
slouken@1895
   122
                return zero;
slouken@1895
   123
            else {
slouken@1895
   124
                dk = (double) k;
slouken@1895
   125
                return dk * ln2_hi + dk * ln2_lo;
slouken@1895
   126
            }
slouken@1895
   127
        }
slouken@1895
   128
        R = f * f * (0.5 - 0.33333333333333333 * f);
slouken@1895
   129
        if (k == 0)
slouken@1895
   130
            return f - R;
slouken@1895
   131
        else {
slouken@1895
   132
            dk = (double) k;
slouken@1895
   133
            return dk * ln2_hi - ((R - dk * ln2_lo) - f);
slouken@1895
   134
        }
slouken@1895
   135
    }
slouken@1895
   136
    s = f / (2.0 + f);
slouken@1895
   137
    dk = (double) k;
slouken@1895
   138
    z = s * s;
slouken@1895
   139
    i = hx - 0x6147a;
slouken@1895
   140
    w = z * z;
slouken@1895
   141
    j = 0x6b851 - hx;
slouken@1895
   142
    t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
slouken@1895
   143
    t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
slouken@1895
   144
    i |= j;
slouken@1895
   145
    R = t2 + t1;
slouken@1895
   146
    if (i > 0) {
slouken@1895
   147
        hfsq = 0.5 * f * f;
slouken@1895
   148
        if (k == 0)
slouken@1895
   149
            return f - (hfsq - s * (hfsq + R));
slouken@1895
   150
        else
slouken@1895
   151
            return dk * ln2_hi - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) -
slouken@1895
   152
                                  f);
slouken@1895
   153
    } else {
slouken@1895
   154
        if (k == 0)
slouken@1895
   155
            return f - s * (f - R);
slouken@1895
   156
        else
slouken@1895
   157
            return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f);
slouken@1895
   158
    }
slouken@1330
   159
}
slouken@1895
   160
slouken@1895
   161
/* vi: set ts=4 sw=4 expandtab: */