Skip to content
This repository has been archived by the owner on Feb 11, 2021. It is now read-only.

Latest commit

 

History

History
451 lines (412 loc) · 15.4 KB

SDL_qsort.c

File metadata and controls

451 lines (412 loc) · 15.4 KB
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
/* qsort.c
* (c) 1998 Gareth McCaughan
*
* This is a drop-in replacement for the C library's |qsort()| routine.
*
* Features:
* - Median-of-three pivoting (and more)
* - Truncation and final polishing by a single insertion sort
* - Early truncation when no swaps needed in pivoting step
* - Explicit recursion, guaranteed not to overflow
* - A few little wrinkles stolen from the GNU |qsort()|.
* - separate code for non-aligned / aligned / word-size objects
*
* This code may be reproduced freely provided
* - this file is retained unaltered apart from minor
* changes for portability and efficiency
* - no changes are made to this comment
* - any changes that *are* made are clearly flagged
* - the _ID string below is altered by inserting, after
* the date, the string " altered" followed at your option
* by other material. (Exceptions: you may change the name
* of the exported routine without changing the ID string.
* You may change the values of the macros TRUNC_* and
* PIVOT_THRESHOLD without changing the ID string, provided
* they remain constants with TRUNC_nonaligned, TRUNC_aligned
* and TRUNC_words/WORD_BYTES between 8 and 24, and
* PIVOT_THRESHOLD between 32 and 200.)
*
* You may use it in anything you like; you may make money
* out of it; you may distribute it in object form or as
* part of an executable without including source code;
* you don't have to credit me. (But it would be nice if
* you did.)
*
* If you find problems with this code, or find ways of
* making it significantly faster, please let me know!
* My e-mail address, valid as of early 1998 and certainly
* OK for at least the next 18 months, is
* gjm11@dpmms.cam.ac.uk
* Thanks!
*
* Gareth McCaughan Peterhouse Cambridge 1998
*/
Feb 21, 2006
Feb 21, 2006
44
#include "SDL_config.h"
45
46
47
48
49
50
/*
#include <assert.h>
#include <stdlib.h>
#include <string.h>
*/
Feb 9, 2006
Feb 9, 2006
51
#include "SDL_stdinc.h"
Feb 7, 2006
Feb 7, 2006
53
54
55
56
57
58
59
60
#define assert(X)
#define malloc SDL_malloc
#define free SDL_free
#define memcpy SDL_memcpy
#define memmove SDL_memmove
#define qsort SDL_qsort
May 28, 2006
May 28, 2006
63
static char _ID[] = "<qsort.c gjm 1.12 1998-03-19>";
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
/* How many bytes are there per word? (Must be a power of 2,
* and must in fact equal sizeof(int).)
*/
#define WORD_BYTES sizeof(int)
/* How big does our stack need to be? Answer: one entry per
* bit in a |size_t|.
*/
#define STACK_SIZE (8*sizeof(size_t))
/* Different situations have slightly different requirements,
* and we make life epsilon easier by using different truncation
* points for the three different cases.
* So far, I have tuned TRUNC_words and guessed that the same
* value might work well for the other two cases. Of course
* what works well on my machine might work badly on yours.
*/
#define TRUNC_nonaligned 12
#define TRUNC_aligned 12
May 28, 2006
May 28, 2006
84
#define TRUNC_words 12*WORD_BYTES /* nb different meaning */
85
86
87
88
89
90
91
/* We use a simple pivoting algorithm for shortish sub-arrays
* and a more complicated one for larger ones. The threshold
* is PIVOT_THRESHOLD.
*/
#define PIVOT_THRESHOLD 40
May 28, 2006
May 28, 2006
92
93
94
95
96
typedef struct
{
char *first;
char *last;
} stack_entry;
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#define pushLeft {stack[stacktop].first=ffirst;stack[stacktop++].last=last;}
#define pushRight {stack[stacktop].first=first;stack[stacktop++].last=llast;}
#define doLeft {first=ffirst;llast=last;continue;}
#define doRight {ffirst=first;last=llast;continue;}
#define pop {if (--stacktop<0) break;\
first=ffirst=stack[stacktop].first;\
last=llast=stack[stacktop].last;\
continue;}
/* Some comments on the implementation.
* 1. When we finish partitioning the array into "low"
* and "high", we forget entirely about short subarrays,
* because they'll be done later by insertion sort.
* Doing lots of little insertion sorts might be a win
* on large datasets for locality-of-reference reasons,
* but it makes the code much nastier and increases
* bookkeeping overhead.
* 2. We always save the shorter and get to work on the
* longer. This guarantees that every time we push
* an item onto the stack its size is <= 1/2 of that
* of its parent; so the stack can't need more than
* log_2(max-array-size) entries.
* 3. We choose a pivot by looking at the first, last
* and middle elements. We arrange them into order
* because it's easy to do that in conjunction with
* choosing the pivot, and it makes things a little
* easier in the partitioning step. Anyway, the pivot
* is the middle of these three. It's still possible
* to construct datasets where the algorithm takes
* time of order n^2, but it simply never happens in
* practice.
* 3' Newsflash: On further investigation I find that
* it's easy to construct datasets where median-of-3
* simply isn't good enough. So on large-ish subarrays
* we do a more sophisticated pivoting: we take three
* sets of 3 elements, find their medians, and then
* take the median of those.
* 4. We copy the pivot element to a separate place
* because that way we can always do our comparisons
* directly against a pointer to that separate place,
* and don't have to wonder "did we move the pivot
* element?". This makes the inner loop better.
* 5. It's possible to make the pivoting even more
* reliable by looking at more candidates when n
* is larger. (Taking this to its logical conclusion
* results in a variant of quicksort that doesn't
* have that n^2 worst case.) However, the overhead
* from the extra bookkeeping means that it's just
* not worth while.
* 6. This is pretty clean and portable code. Here are
* all the potential portability pitfalls and problems
* I know of:
* - In one place (the insertion sort) I construct
* a pointer that points just past the end of the
* supplied array, and assume that (a) it won't
* compare equal to any pointer within the array,
* and (b) it will compare equal to a pointer
* obtained by stepping off the end of the array.
* These might fail on some segmented architectures.
* - I assume that there are 8 bits in a |char| when
* computing the size of stack needed. This would
* fail on machines with 9-bit or 16-bit bytes.
* - I assume that if |((int)base&(sizeof(int)-1))==0|
* and |(size&(sizeof(int)-1))==0| then it's safe to
* get at array elements via |int*|s, and that if
* actually |size==sizeof(int)| as well then it's
* safe to treat the elements as |int|s. This might
* fail on systems that convert pointers to integers
* in non-standard ways.
* - I assume that |8*sizeof(size_t)<=INT_MAX|. This
* would be false on a machine with 8-bit |char|s,
* 16-bit |int|s and 4096-bit |size_t|s. :-)
*/
/* The recursion logic is the same in each case: */
#define Recurse(Trunc) \
{ size_t l=last-ffirst,r=llast-first; \
if (l<Trunc) { \
if (r>=Trunc) doRight \
else pop \
} \
else if (l<=r) { pushLeft; doRight } \
else if (r>=Trunc) { pushRight; doLeft }\
else doLeft \
}
/* and so is the pivoting logic: */
#define Pivot(swapper,sz) \
if ((size_t)(last-first)>PIVOT_THRESHOLD*sz) mid=pivot_big(first,mid,last,sz,compare);\
else { \
if (compare(first,mid)<0) { \
if (compare(mid,last)>0) { \
swapper(mid,last); \
if (compare(first,mid)>0) swapper(first,mid);\
} \
} \
else { \
if (compare(mid,last)>0) swapper(first,last)\
else { \
swapper(first,mid); \
if (compare(mid,last)>0) swapper(mid,last);\
} \
} \
first+=sz; last-=sz; \
}
#ifdef DEBUG_QSORT
#include <stdio.h>
#endif
/* and so is the partitioning logic: */
#define Partition(swapper,sz) { \
int swapped=0; \
do { \
while (compare(first,pivot)<0) first+=sz; \
while (compare(pivot,last)<0) last-=sz; \
if (first<last) { \
swapper(first,last); swapped=1; \
first+=sz; last-=sz; } \
else if (first==last) { first+=sz; last-=sz; break; }\
} while (first<=last); \
if (!swapped) pop \
}
/* and so is the pre-insertion-sort operation of putting
* the smallest element into place as a sentinel.
* Doing this makes the inner loop nicer. I got this
* idea from the GNU implementation of qsort().
*/
#define PreInsertion(swapper,limit,sz) \
first=base; \
last=first + (nmemb>limit ? limit : nmemb-1)*sz;\
while (last!=base) { \
if (compare(first,last)>0) first=last; \
last-=sz; } \
if (first!=base) swapper(first,(char*)base);
/* and so is the insertion sort, in the first two cases: */
#define Insertion(swapper) \
last=((char*)base)+nmemb*size; \
for (first=((char*)base)+size;first!=last;first+=size) { \
char *test; \
/* Find the right place for |first|. \
* My apologies for var reuse. */ \
for (test=first-size;compare(test,first)>0;test-=size) ; \
test+=size; \
if (test!=first) { \
/* Shift everything in [test,first) \
* up by one, and place |first| \
* where |test| is. */ \
Feb 7, 2006
Feb 7, 2006
247
248
249
memcpy(pivot,first,size); \
memmove(test+size,test,first-test); \
memcpy(test,pivot,size); \
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
} \
}
#define SWAP_nonaligned(a,b) { \
register char *aa=(a),*bb=(b); \
register size_t sz=size; \
do { register char t=*aa; *aa++=*bb; *bb++=t; } while (--sz); }
#define SWAP_aligned(a,b) { \
register int *aa=(int*)(a),*bb=(int*)(b); \
register size_t sz=size; \
do { register int t=*aa;*aa++=*bb; *bb++=t; } while (sz-=WORD_BYTES); }
#define SWAP_words(a,b) { \
register int t=*((int*)a); *((int*)a)=*((int*)b); *((int*)b)=t; }
/* ---------------------------------------------------------------------- */
May 28, 2006
May 28, 2006
268
269
270
271
272
273
274
275
static char *
pivot_big (char *first, char *mid, char *last, size_t size,
int compare (const void *, const void *))
{
size_t d = (((last - first) / size) >> 3) * size;
char *m1, *m2, *m3;
{
char *a = first, *b = first + d, *c = first + 2 * d;
May 28, 2006
May 28, 2006
277
fprintf (stderr, "< %d %d %d\n", *(int *) a, *(int *) b, *(int *) c);
May 28, 2006
May 28, 2006
279
280
281
282
283
284
m1 = compare (a, b) < 0 ?
(compare (b, c) < 0 ? b : (compare (a, c) < 0 ? c : a))
: (compare (a, c) < 0 ? a : (compare (b, c) < 0 ? c : b));
}
{
char *a = mid - d, *b = mid, *c = mid + d;
May 28, 2006
May 28, 2006
286
fprintf (stderr, ". %d %d %d\n", *(int *) a, *(int *) b, *(int *) c);
May 28, 2006
May 28, 2006
288
289
290
291
292
293
m2 = compare (a, b) < 0 ?
(compare (b, c) < 0 ? b : (compare (a, c) < 0 ? c : a))
: (compare (a, c) < 0 ? a : (compare (b, c) < 0 ? c : b));
}
{
char *a = last - 2 * d, *b = last - d, *c = last;
May 28, 2006
May 28, 2006
295
fprintf (stderr, "> %d %d %d\n", *(int *) a, *(int *) b, *(int *) c);
May 28, 2006
May 28, 2006
297
298
299
300
m3 = compare (a, b) < 0 ?
(compare (b, c) < 0 ? b : (compare (a, c) < 0 ? c : a))
: (compare (a, c) < 0 ? a : (compare (b, c) < 0 ? c : b));
}
May 28, 2006
May 28, 2006
302
fprintf (stderr, "-> %d %d %d\n", *(int *) m1, *(int *) m2, *(int *) m3);
May 28, 2006
May 28, 2006
304
305
306
return compare (m1, m2) < 0 ?
(compare (m2, m3) < 0 ? m2 : (compare (m1, m3) < 0 ? m3 : m1))
: (compare (m1, m3) < 0 ? m1 : (compare (m2, m3) < 0 ? m3 : m2));
307
308
309
310
}
/* ---------------------------------------------------------------------- */
May 28, 2006
May 28, 2006
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
static void
qsort_nonaligned (void *base, size_t nmemb, size_t size,
int (*compare) (const void *, const void *))
{
stack_entry stack[STACK_SIZE];
int stacktop = 0;
char *first, *last;
char *pivot = malloc (size);
size_t trunc = TRUNC_nonaligned * size;
assert (pivot != 0);
first = (char *) base;
last = first + (nmemb - 1) * size;
if ((size_t) (last - first) > trunc) {
char *ffirst = first, *llast = last;
while (1) {
/* Select pivot */
{
char *mid = first + size * ((last - first) / size >> 1);
Pivot (SWAP_nonaligned, size);
memcpy (pivot, mid, size);
}
/* Partition. */
Partition (SWAP_nonaligned, size);
/* Prepare to recurse/iterate. */
Recurse (trunc)}
May 28, 2006
May 28, 2006
340
341
342
PreInsertion (SWAP_nonaligned, TRUNC_nonaligned, size);
Insertion (SWAP_nonaligned);
free (pivot);
May 28, 2006
May 28, 2006
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
static void
qsort_aligned (void *base, size_t nmemb, size_t size,
int (*compare) (const void *, const void *))
{
stack_entry stack[STACK_SIZE];
int stacktop = 0;
char *first, *last;
char *pivot = malloc (size);
size_t trunc = TRUNC_aligned * size;
assert (pivot != 0);
first = (char *) base;
last = first + (nmemb - 1) * size;
if ((size_t) (last - first) > trunc) {
char *ffirst = first, *llast = last;
while (1) {
/* Select pivot */
{
char *mid = first + size * ((last - first) / size >> 1);
Pivot (SWAP_aligned, size);
memcpy (pivot, mid, size);
}
/* Partition. */
Partition (SWAP_aligned, size);
/* Prepare to recurse/iterate. */
Recurse (trunc)}
May 28, 2006
May 28, 2006
374
375
376
PreInsertion (SWAP_aligned, TRUNC_aligned, size);
Insertion (SWAP_aligned);
free (pivot);
May 28, 2006
May 28, 2006
379
380
381
382
static void
qsort_words (void *base, size_t nmemb,
int (*compare) (const void *, const void *))
{
May 28, 2006
May 28, 2006
384
385
386
387
388
stack_entry stack[STACK_SIZE];
int stacktop = 0;
char *first, *last;
char *pivot = malloc (WORD_BYTES);
assert (pivot != 0);
May 28, 2006
May 28, 2006
390
391
first = (char *) base;
last = first + (nmemb - 1) * WORD_BYTES;
May 28, 2006
May 28, 2006
393
394
395
if (last - first > TRUNC_words) {
char *ffirst = first, *llast = last;
while (1) {
May 28, 2006
May 28, 2006
397
398
399
fprintf (stderr, "Doing %d:%d: ",
(first - (char *) base) / WORD_BYTES,
(last - (char *) base) / WORD_BYTES);
May 28, 2006
May 28, 2006
401
402
403
404
405
406
407
/* Select pivot */
{
char *mid =
first + WORD_BYTES * ((last - first) / (2 * WORD_BYTES));
Pivot (SWAP_words, WORD_BYTES);
*(int *) pivot = *(int *) mid;
}
May 28, 2006
May 28, 2006
409
fprintf (stderr, "pivot=%d\n", *(int *) pivot);
May 28, 2006
May 28, 2006
411
412
413
414
/* Partition. */
Partition (SWAP_words, WORD_BYTES);
/* Prepare to recurse/iterate. */
Recurse (TRUNC_words)}
May 28, 2006
May 28, 2006
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
PreInsertion (SWAP_words, (TRUNC_words / WORD_BYTES), WORD_BYTES);
/* Now do insertion sort. */
last = ((char *) base) + nmemb * WORD_BYTES;
for (first = ((char *) base) + WORD_BYTES; first != last;
first += WORD_BYTES) {
/* Find the right place for |first|. My apologies for var reuse */
int *pl = (int *) (first - WORD_BYTES), *pr = (int *) first;
*(int *) pivot = *(int *) first;
for (; compare (pl, pivot) > 0; pr = pl, --pl) {
*pr = *pl;
}
if (pr != (int *) first)
*pr = *(int *) pivot;
}
free (pivot);
431
432
433
434
}
/* ---------------------------------------------------------------------- */
May 28, 2006
May 28, 2006
435
436
437
438
439
440
441
442
443
444
445
446
447
void
qsort (void *base, size_t nmemb, size_t size,
int (*compare) (const void *, const void *))
{
if (nmemb <= 1)
return;
if (((uintptr_t) base | size) & (WORD_BYTES - 1))
qsort_nonaligned (base, nmemb, size, compare);
else if (size != WORD_BYTES)
qsort_aligned (base, nmemb, size, compare);
else
qsort_words (base, nmemb, compare);
Feb 6, 2006
Feb 6, 2006
450
#endif /* !HAVE_QSORT */
May 28, 2006
May 28, 2006
451
/* vi: set ts=4 sw=4 expandtab: */