Skip to content

Latest commit

 

History

History
407 lines (363 loc) · 20.2 KB

noise_shape_analysis_FIX.c

File metadata and controls

407 lines (363 loc) · 20.2 KB
 
1
2
3
4
5
6
7
8
9
10
/***********************************************************************
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
Oct 6, 2019
Oct 6, 2019
11
- Neither the name of Internet Society, IETF or IETF Trust, nor the
12
13
14
names of specific contributors, may be used to endorse or promote
products derived from this software without specific prior written
permission.
Oct 6, 2019
Oct 6, 2019
15
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
***********************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "main_FIX.h"
Oct 6, 2019
Oct 6, 2019
33
#include "stack_alloc.h"
34
35
36
37
38
39
#include "tuning_parameters.h"
/* Compute gain to make warped filter coefficients have a zero mean log frequency response on a */
/* non-warped frequency scale. (So that it can be implemented with a minimum-phase monic filter.) */
/* Note: A monic filter is one with the first coefficient equal to 1.0. In Silk we omit the first */
/* coefficient in an array of coefficients, for monic filters. */
Oct 6, 2019
Oct 6, 2019
40
static OPUS_INLINE opus_int32 warped_gain( /* gain in Q16*/
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
const opus_int32 *coefs_Q24,
opus_int lambda_Q16,
opus_int order
) {
opus_int i;
opus_int32 gain_Q24;
lambda_Q16 = -lambda_Q16;
gain_Q24 = coefs_Q24[ order - 1 ];
for( i = order - 2; i >= 0; i-- ) {
gain_Q24 = silk_SMLAWB( coefs_Q24[ i ], gain_Q24, lambda_Q16 );
}
gain_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), gain_Q24, -lambda_Q16 );
return silk_INVERSE32_varQ( gain_Q24, 40 );
}
/* Convert warped filter coefficients to monic pseudo-warped coefficients and limit maximum */
/* amplitude of monic warped coefficients by using bandwidth expansion on the true coefficients */
Oct 6, 2019
Oct 6, 2019
59
60
static OPUS_INLINE void limit_warped_coefs(
opus_int32 *coefs_Q24,
61
62
63
64
65
opus_int lambda_Q16,
opus_int32 limit_Q24,
opus_int order
) {
opus_int i, iter, ind = 0;
Oct 6, 2019
Oct 6, 2019
66
opus_int32 tmp, maxabs_Q24, chirp_Q16, gain_Q16;
67
opus_int32 nom_Q16, den_Q24;
Oct 6, 2019
Oct 6, 2019
68
opus_int32 limit_Q20, maxabs_Q20;
69
70
71
72
/* Convert to monic coefficients */
lambda_Q16 = -lambda_Q16;
for( i = order - 1; i > 0; i-- ) {
Oct 6, 2019
Oct 6, 2019
73
coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 );
74
75
}
lambda_Q16 = -lambda_Q16;
Oct 6, 2019
Oct 6, 2019
76
77
78
nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 );
den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_Q24[ 0 ], lambda_Q16 );
gain_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
79
for( i = 0; i < order; i++ ) {
Oct 6, 2019
Oct 6, 2019
80
coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] );
Oct 6, 2019
Oct 6, 2019
82
limit_Q20 = silk_RSHIFT(limit_Q24, 4);
83
84
85
86
for( iter = 0; iter < 10; iter++ ) {
/* Find maximum absolute value */
maxabs_Q24 = -1;
for( i = 0; i < order; i++ ) {
Oct 6, 2019
Oct 6, 2019
87
tmp = silk_abs_int32( coefs_Q24[ i ] );
88
89
90
91
92
if( tmp > maxabs_Q24 ) {
maxabs_Q24 = tmp;
ind = i;
}
}
Oct 6, 2019
Oct 6, 2019
93
94
95
/* Use Q20 to avoid any overflow when multiplying by (ind + 1) later. */
maxabs_Q20 = silk_RSHIFT(maxabs_Q24, 4);
if( maxabs_Q20 <= limit_Q20 ) {
96
97
98
99
100
101
/* Coefficients are within range - done */
return;
}
/* Convert back to true warped coefficients */
for( i = 1; i < order; i++ ) {
Oct 6, 2019
Oct 6, 2019
102
coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 );
Oct 6, 2019
Oct 6, 2019
104
gain_Q16 = silk_INVERSE32_varQ( gain_Q16, 32 );
105
for( i = 0; i < order; i++ ) {
Oct 6, 2019
Oct 6, 2019
106
coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] );
107
108
109
110
}
/* Apply bandwidth expansion */
chirp_Q16 = SILK_FIX_CONST( 0.99, 16 ) - silk_DIV32_varQ(
Oct 6, 2019
Oct 6, 2019
111
112
113
silk_SMULWB( maxabs_Q20 - limit_Q20, silk_SMLABB( SILK_FIX_CONST( 0.8, 10 ), SILK_FIX_CONST( 0.1, 10 ), iter ) ),
silk_MUL( maxabs_Q20, ind + 1 ), 22 );
silk_bwexpander_32( coefs_Q24, order, chirp_Q16 );
114
115
116
117
/* Convert to monic warped coefficients */
lambda_Q16 = -lambda_Q16;
for( i = order - 1; i > 0; i-- ) {
Oct 6, 2019
Oct 6, 2019
118
coefs_Q24[ i - 1 ] = silk_SMLAWB( coefs_Q24[ i - 1 ], coefs_Q24[ i ], lambda_Q16 );
119
120
121
}
lambda_Q16 = -lambda_Q16;
nom_Q16 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 16 ), -(opus_int32)lambda_Q16, lambda_Q16 );
Oct 6, 2019
Oct 6, 2019
122
123
den_Q24 = silk_SMLAWB( SILK_FIX_CONST( 1.0, 24 ), coefs_Q24[ 0 ], lambda_Q16 );
gain_Q16 = silk_DIV32_varQ( nom_Q16, den_Q24, 24 );
124
for( i = 0; i < order; i++ ) {
Oct 6, 2019
Oct 6, 2019
125
coefs_Q24[ i ] = silk_SMULWW( gain_Q16, coefs_Q24[ i ] );
126
127
128
129
130
}
}
silk_assert( 0 );
}
Oct 6, 2019
Oct 6, 2019
131
132
133
134
135
/* Disable MIPS version until it's updated. */
#if 0 && defined(MIPSr1_ASM)
#include "mips/noise_shape_analysis_FIX_mipsr1.h"
#endif
136
137
138
/**************************************************************/
/* Compute noise shaping coefficients and initial gain values */
/**************************************************************/
Oct 6, 2019
Oct 6, 2019
139
#ifndef OVERRIDE_silk_noise_shape_analysis_FIX
140
141
142
143
void silk_noise_shape_analysis_FIX(
silk_encoder_state_FIX *psEnc, /* I/O Encoder state FIX */
silk_encoder_control_FIX *psEncCtrl, /* I/O Encoder control FIX */
const opus_int16 *pitch_res, /* I LPC residual from pitch analysis */
Oct 6, 2019
Oct 6, 2019
144
145
const opus_int16 *x, /* I Input signal [ frame_length + la_shape ] */
int arch /* I Run-time architecture */
146
147
148
)
{
silk_shape_state_FIX *psShapeSt = &psEnc->sShape;
Oct 6, 2019
Oct 6, 2019
149
150
151
152
opus_int k, i, nSamples, nSegs, Qnrg, b_Q14, warping_Q16, scale = 0;
opus_int32 SNR_adj_dB_Q7, HarmShapeGain_Q16, Tilt_Q16, tmp32;
opus_int32 nrg, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7;
opus_int32 BWExp_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8;
153
154
opus_int32 auto_corr[ MAX_SHAPE_LPC_ORDER + 1 ];
opus_int32 refl_coef_Q16[ MAX_SHAPE_LPC_ORDER ];
Oct 6, 2019
Oct 6, 2019
155
156
opus_int32 AR_Q24[ MAX_SHAPE_LPC_ORDER ];
VARDECL( opus_int16, x_windowed );
157
const opus_int16 *x_ptr, *pitch_res_ptr;
Oct 6, 2019
Oct 6, 2019
158
SAVE_STACK;
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/* Point to start of first LPC analysis block */
x_ptr = x - psEnc->sCmn.la_shape;
/****************/
/* GAIN CONTROL */
/****************/
SNR_adj_dB_Q7 = psEnc->sCmn.SNR_dB_Q7;
/* Input quality is the average of the quality in the lowest two VAD bands */
psEncCtrl->input_quality_Q14 = ( opus_int )silk_RSHIFT( (opus_int32)psEnc->sCmn.input_quality_bands_Q15[ 0 ]
+ psEnc->sCmn.input_quality_bands_Q15[ 1 ], 2 );
/* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */
psEncCtrl->coding_quality_Q14 = silk_RSHIFT( silk_sigm_Q15( silk_RSHIFT_ROUND( SNR_adj_dB_Q7 -
SILK_FIX_CONST( 20.0, 7 ), 4 ) ), 1 );
/* Reduce coding SNR during low speech activity */
if( psEnc->sCmn.useCBR == 0 ) {
b_Q8 = SILK_FIX_CONST( 1.0, 8 ) - psEnc->sCmn.speech_activity_Q8;
b_Q8 = silk_SMULWB( silk_LSHIFT( b_Q8, 8 ), b_Q8 );
SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
silk_SMULBB( SILK_FIX_CONST( -BG_SNR_DECR_dB, 7 ) >> ( 4 + 1 ), b_Q8 ), /* Q11*/
silk_SMULWB( SILK_FIX_CONST( 1.0, 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) ); /* Q12*/
}
if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
/* Reduce gains for periodic signals */
SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7, SILK_FIX_CONST( HARM_SNR_INCR_dB, 8 ), psEnc->LTPCorr_Q15 );
} else {
/* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */
SNR_adj_dB_Q7 = silk_SMLAWB( SNR_adj_dB_Q7,
silk_SMLAWB( SILK_FIX_CONST( 6.0, 9 ), -SILK_FIX_CONST( 0.4, 18 ), psEnc->sCmn.SNR_dB_Q7 ),
SILK_FIX_CONST( 1.0, 14 ) - psEncCtrl->input_quality_Q14 );
}
/*************************/
/* SPARSENESS PROCESSING */
/*************************/
/* Set quantizer offset */
if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
/* Initially set to 0; may be overruled in process_gains(..) */
psEnc->sCmn.indices.quantOffsetType = 0;
} else {
/* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */
nSamples = silk_LSHIFT( psEnc->sCmn.fs_kHz, 1 );
energy_variation_Q7 = 0;
log_energy_prev_Q7 = 0;
pitch_res_ptr = pitch_res;
Oct 6, 2019
Oct 6, 2019
208
209
nSegs = silk_SMULBB( SUB_FRAME_LENGTH_MS, psEnc->sCmn.nb_subfr ) / 2;
for( k = 0; k < nSegs; k++ ) {
210
211
212
213
214
215
216
217
218
219
220
221
silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples );
nrg += silk_RSHIFT( nSamples, scale ); /* Q(-scale)*/
log_energy_Q7 = silk_lin2log( nrg );
if( k > 0 ) {
energy_variation_Q7 += silk_abs( log_energy_Q7 - log_energy_prev_Q7 );
}
log_energy_prev_Q7 = log_energy_Q7;
pitch_res_ptr += nSamples;
}
/* Set quantization offset depending on sparseness measure */
Oct 6, 2019
Oct 6, 2019
222
if( energy_variation_Q7 > SILK_FIX_CONST( ENERGY_VARIATION_THRESHOLD_QNT_OFFSET, 7 ) * (nSegs-1) ) {
223
224
225
226
227
228
229
230
231
232
233
psEnc->sCmn.indices.quantOffsetType = 0;
} else {
psEnc->sCmn.indices.quantOffsetType = 1;
}
}
/*******************************/
/* Control bandwidth expansion */
/*******************************/
/* More BWE for signals with high prediction gain */
strength_Q16 = silk_SMULWB( psEncCtrl->predGain_Q16, SILK_FIX_CONST( FIND_PITCH_WHITE_NOISE_FRACTION, 16 ) );
Oct 6, 2019
Oct 6, 2019
234
BWExp_Q16 = silk_DIV32_varQ( SILK_FIX_CONST( BANDWIDTH_EXPANSION, 16 ),
235
236
237
238
239
240
241
242
243
244
245
246
silk_SMLAWW( SILK_FIX_CONST( 1.0, 16 ), strength_Q16, strength_Q16 ), 16 );
if( psEnc->sCmn.warping_Q16 > 0 ) {
/* Slightly more warping in analysis will move quantization noise up in frequency, where it's better masked */
warping_Q16 = silk_SMLAWB( psEnc->sCmn.warping_Q16, (opus_int32)psEncCtrl->coding_quality_Q14, SILK_FIX_CONST( 0.01, 18 ) );
} else {
warping_Q16 = 0;
}
/********************************************/
/* Compute noise shaping AR coefs and gains */
/********************************************/
Oct 6, 2019
Oct 6, 2019
247
ALLOC( x_windowed, psEnc->sCmn.shapeWinLength, opus_int16 );
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
/* Apply window: sine slope followed by flat part followed by cosine slope */
opus_int shift, slope_part, flat_part;
flat_part = psEnc->sCmn.fs_kHz * 3;
slope_part = silk_RSHIFT( psEnc->sCmn.shapeWinLength - flat_part, 1 );
silk_apply_sine_window( x_windowed, x_ptr, 1, slope_part );
shift = slope_part;
silk_memcpy( x_windowed + shift, x_ptr + shift, flat_part * sizeof(opus_int16) );
shift += flat_part;
silk_apply_sine_window( x_windowed + shift, x_ptr + shift, 2, slope_part );
/* Update pointer: next LPC analysis block */
x_ptr += psEnc->sCmn.subfr_length;
if( psEnc->sCmn.warping_Q16 > 0 ) {
/* Calculate warped auto correlation */
Oct 6, 2019
Oct 6, 2019
265
silk_warped_autocorrelation_FIX( auto_corr, &scale, x_windowed, warping_Q16, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder, arch );
266
267
} else {
/* Calculate regular auto correlation */
Oct 6, 2019
Oct 6, 2019
268
silk_autocorr( auto_corr, &scale, x_windowed, psEnc->sCmn.shapeWinLength, psEnc->sCmn.shapingLPCOrder + 1, arch );
269
270
271
272
273
274
275
276
277
278
279
}
/* Add white noise, as a fraction of energy */
auto_corr[0] = silk_ADD32( auto_corr[0], silk_max_32( silk_SMULWB( silk_RSHIFT( auto_corr[ 0 ], 4 ),
SILK_FIX_CONST( SHAPE_WHITE_NOISE_FRACTION, 20 ) ), 1 ) );
/* Calculate the reflection coefficients using schur */
nrg = silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder );
silk_assert( nrg >= 0 );
/* Convert reflection coefficients to prediction coefficients */
Oct 6, 2019
Oct 6, 2019
280
silk_k2a_Q16( AR_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder );
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
Qnrg = -scale; /* range: -12...30*/
silk_assert( Qnrg >= -12 );
silk_assert( Qnrg <= 30 );
/* Make sure that Qnrg is an even number */
if( Qnrg & 1 ) {
Qnrg -= 1;
nrg >>= 1;
}
tmp32 = silk_SQRT_APPROX( nrg );
Qnrg >>= 1; /* range: -6...15*/
psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT_SAT32( tmp32, 16 - Qnrg );
if( psEnc->sCmn.warping_Q16 > 0 ) {
/* Adjust gain for warping */
Oct 6, 2019
Oct 6, 2019
299
300
301
302
gain_mult_Q16 = warped_gain( AR_Q24, warping_Q16, psEnc->sCmn.shapingLPCOrder );
silk_assert( psEncCtrl->Gains_Q16[ k ] > 0 );
if( psEncCtrl->Gains_Q16[ k ] < SILK_FIX_CONST( 0.25, 16 ) ) {
psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
Oct 6, 2019
Oct 6, 2019
304
305
306
307
308
309
psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( silk_RSHIFT_ROUND( psEncCtrl->Gains_Q16[ k ], 1 ), gain_mult_Q16 );
if ( psEncCtrl->Gains_Q16[ k ] >= ( silk_int32_MAX >> 1 ) ) {
psEncCtrl->Gains_Q16[ k ] = silk_int32_MAX;
} else {
psEncCtrl->Gains_Q16[ k ] = silk_LSHIFT32( psEncCtrl->Gains_Q16[ k ], 1 );
}
Oct 6, 2019
Oct 6, 2019
311
silk_assert( psEncCtrl->Gains_Q16[ k ] > 0 );
Oct 6, 2019
Oct 6, 2019
314
315
/* Bandwidth expansion */
silk_bwexpander_32( AR_Q24, psEnc->sCmn.shapingLPCOrder, BWExp_Q16 );
Oct 6, 2019
Oct 6, 2019
317
318
319
if( psEnc->sCmn.warping_Q16 > 0 ) {
/* Convert to monic warped prediction coefficients and limit absolute values */
limit_warped_coefs( AR_Q24, warping_Q16, SILK_FIX_CONST( 3.999, 24 ), psEnc->sCmn.shapingLPCOrder );
Oct 6, 2019
Oct 6, 2019
321
322
323
324
325
326
/* Convert from Q24 to Q13 and store in int16 */
for( i = 0; i < psEnc->sCmn.shapingLPCOrder; i++ ) {
psEncCtrl->AR_Q13[ k * MAX_SHAPE_LPC_ORDER + i ] = (opus_int16)silk_SAT16( silk_RSHIFT_ROUND( AR_Q24[ i ], 11 ) );
}
} else {
silk_LPC_fit( &psEncCtrl->AR_Q13[ k * MAX_SHAPE_LPC_ORDER ], AR_Q24, 13, 24, psEnc->sCmn.shapingLPCOrder );
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
}
}
/*****************/
/* Gain tweaking */
/*****************/
/* Increase gains during low speech activity and put lower limit on gains */
gain_mult_Q16 = silk_log2lin( -silk_SMLAWB( -SILK_FIX_CONST( 16.0, 7 ), SNR_adj_dB_Q7, SILK_FIX_CONST( 0.16, 16 ) ) );
gain_add_Q16 = silk_log2lin( silk_SMLAWB( SILK_FIX_CONST( 16.0, 7 ), SILK_FIX_CONST( MIN_QGAIN_DB, 7 ), SILK_FIX_CONST( 0.16, 16 ) ) );
silk_assert( gain_mult_Q16 > 0 );
for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
psEncCtrl->Gains_Q16[ k ] = silk_SMULWW( psEncCtrl->Gains_Q16[ k ], gain_mult_Q16 );
silk_assert( psEncCtrl->Gains_Q16[ k ] >= 0 );
psEncCtrl->Gains_Q16[ k ] = silk_ADD_POS_SAT32( psEncCtrl->Gains_Q16[ k ], gain_add_Q16 );
}
/************************************************/
/* Control low-frequency shaping and noise tilt */
/************************************************/
/* Less low frequency shaping for noisy inputs */
strength_Q16 = silk_MUL( SILK_FIX_CONST( LOW_FREQ_SHAPING, 4 ), silk_SMLAWB( SILK_FIX_CONST( 1.0, 12 ),
SILK_FIX_CONST( LOW_QUALITY_LOW_FREQ_SHAPING_DECR, 13 ), psEnc->sCmn.input_quality_bands_Q15[ 0 ] - SILK_FIX_CONST( 1.0, 15 ) ) );
strength_Q16 = silk_RSHIFT( silk_MUL( strength_Q16, psEnc->sCmn.speech_activity_Q8 ), 8 );
if( psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
/* Reduce low frequencies quantization noise for periodic signals, depending on pitch lag */
/*f = 400; freqz([1, -0.98 + 2e-4 * f], [1, -0.97 + 7e-4 * f], 2^12, Fs); axis([0, 1000, -10, 1])*/
opus_int fs_kHz_inv = silk_DIV32_16( SILK_FIX_CONST( 0.2, 14 ), psEnc->sCmn.fs_kHz );
for( k = 0; k < psEnc->sCmn.nb_subfr; k++ ) {
b_Q14 = fs_kHz_inv + silk_DIV32_16( SILK_FIX_CONST( 3.0, 14 ), psEncCtrl->pitchL[ k ] );
/* Pack two coefficients in one int32 */
psEncCtrl->LF_shp_Q14[ k ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 - silk_SMULWB( strength_Q16, b_Q14 ), 16 );
psEncCtrl->LF_shp_Q14[ k ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
}
silk_assert( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ) < SILK_FIX_CONST( 0.5, 24 ) ); /* Guarantees that second argument to SMULWB() is within range of an opus_int16*/
Tilt_Q16 = - SILK_FIX_CONST( HP_NOISE_COEF, 16 ) -
silk_SMULWB( SILK_FIX_CONST( 1.0, 16 ) - SILK_FIX_CONST( HP_NOISE_COEF, 16 ),
silk_SMULWB( SILK_FIX_CONST( HARM_HP_NOISE_COEF, 24 ), psEnc->sCmn.speech_activity_Q8 ) );
} else {
b_Q14 = silk_DIV32_16( 21299, psEnc->sCmn.fs_kHz ); /* 1.3_Q0 = 21299_Q14*/
/* Pack two coefficients in one int32 */
psEncCtrl->LF_shp_Q14[ 0 ] = silk_LSHIFT( SILK_FIX_CONST( 1.0, 14 ) - b_Q14 -
silk_SMULWB( strength_Q16, silk_SMULWB( SILK_FIX_CONST( 0.6, 16 ), b_Q14 ) ), 16 );
psEncCtrl->LF_shp_Q14[ 0 ] |= (opus_uint16)( b_Q14 - SILK_FIX_CONST( 1.0, 14 ) );
for( k = 1; k < psEnc->sCmn.nb_subfr; k++ ) {
psEncCtrl->LF_shp_Q14[ k ] = psEncCtrl->LF_shp_Q14[ 0 ];
}
Tilt_Q16 = -SILK_FIX_CONST( HP_NOISE_COEF, 16 );
}
/****************************/
/* HARMONIC SHAPING CONTROL */
/****************************/
if( USE_HARM_SHAPING && psEnc->sCmn.indices.signalType == TYPE_VOICED ) {
/* More harmonic noise shaping for high bitrates or noisy input */
HarmShapeGain_Q16 = silk_SMLAWB( SILK_FIX_CONST( HARMONIC_SHAPING, 16 ),
SILK_FIX_CONST( 1.0, 16 ) - silk_SMULWB( SILK_FIX_CONST( 1.0, 18 ) - silk_LSHIFT( psEncCtrl->coding_quality_Q14, 4 ),
psEncCtrl->input_quality_Q14 ), SILK_FIX_CONST( HIGH_RATE_OR_LOW_QUALITY_HARMONIC_SHAPING, 16 ) );
/* Less harmonic noise shaping for less periodic signals */
HarmShapeGain_Q16 = silk_SMULWB( silk_LSHIFT( HarmShapeGain_Q16, 1 ),
silk_SQRT_APPROX( silk_LSHIFT( psEnc->LTPCorr_Q15, 15 ) ) );
} else {
HarmShapeGain_Q16 = 0;
}
/*************************/
/* Smooth over subframes */
/*************************/
for( k = 0; k < MAX_NB_SUBFR; k++ ) {
psShapeSt->HarmShapeGain_smth_Q16 =
silk_SMLAWB( psShapeSt->HarmShapeGain_smth_Q16, HarmShapeGain_Q16 - psShapeSt->HarmShapeGain_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
psShapeSt->Tilt_smth_Q16 =
silk_SMLAWB( psShapeSt->Tilt_smth_Q16, Tilt_Q16 - psShapeSt->Tilt_smth_Q16, SILK_FIX_CONST( SUBFR_SMTH_COEF, 16 ) );
psEncCtrl->HarmShapeGain_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->HarmShapeGain_smth_Q16, 2 );
psEncCtrl->Tilt_Q14[ k ] = ( opus_int )silk_RSHIFT_ROUND( psShapeSt->Tilt_smth_Q16, 2 );
}
Oct 6, 2019
Oct 6, 2019
405
RESTORE_STACK;
Oct 6, 2019
Oct 6, 2019
407
#endif /* OVERRIDE_silk_noise_shape_analysis_FIX */