Skip to content

Latest commit

 

History

History
360 lines (306 loc) · 14.7 KB

File metadata and controls

360 lines (306 loc) · 14.7 KB
 
1
2
3
4
5
6
7
8
9
10
/***********************************************************************
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
Oct 6, 2019
Oct 6, 2019
11
- Neither the name of Internet Society, IETF or IETF Trust, nor the
12
13
14
names of specific contributors, may be used to endorse or promote
products derived from this software without specific prior written
permission.
Oct 6, 2019
Oct 6, 2019
15
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
***********************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "main.h"
Oct 6, 2019
Oct 6, 2019
33
#include "stack_alloc.h"
34
35
/* Silk VAD noise level estimation */
Oct 6, 2019
Oct 6, 2019
36
37
# if !defined(OPUS_X86_MAY_HAVE_SSE4_1)
static OPUS_INLINE void silk_VAD_GetNoiseLevels(
38
39
40
const opus_int32 pX[ VAD_N_BANDS ], /* I subband energies */
silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */
);
Oct 6, 2019
Oct 6, 2019
41
#endif
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
/**********************************/
/* Initialization of the Silk VAD */
/**********************************/
opus_int silk_VAD_Init( /* O Return value, 0 if success */
silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */
)
{
opus_int b, ret = 0;
/* reset state memory */
silk_memset( psSilk_VAD, 0, sizeof( silk_VAD_state ) );
/* init noise levels */
/* Initialize array with approx pink noise levels (psd proportional to inverse of frequency) */
for( b = 0; b < VAD_N_BANDS; b++ ) {
psSilk_VAD->NoiseLevelBias[ b ] = silk_max_32( silk_DIV32_16( VAD_NOISE_LEVELS_BIAS, b + 1 ), 1 );
}
/* Initialize state */
for( b = 0; b < VAD_N_BANDS; b++ ) {
psSilk_VAD->NL[ b ] = silk_MUL( 100, psSilk_VAD->NoiseLevelBias[ b ] );
psSilk_VAD->inv_NL[ b ] = silk_DIV32( silk_int32_MAX, psSilk_VAD->NL[ b ] );
}
psSilk_VAD->counter = 15;
/* init smoothed energy-to-noise ratio*/
for( b = 0; b < VAD_N_BANDS; b++ ) {
psSilk_VAD->NrgRatioSmth_Q8[ b ] = 100 * 256; /* 100 * 256 --> 20 dB SNR */
}
return( ret );
}
/* Weighting factors for tilt measure */
static const opus_int32 tiltWeights[ VAD_N_BANDS ] = { 30000, 6000, -12000, -12000 };
/***************************************/
/* Get the speech activity level in Q8 */
/***************************************/
Oct 6, 2019
Oct 6, 2019
82
opus_int silk_VAD_GetSA_Q8_c( /* O Return value, 0 if success */
83
84
85
86
87
silk_encoder_state *psEncC, /* I/O Encoder state */
const opus_int16 pIn[] /* I PCM input */
)
{
opus_int SA_Q15, pSNR_dB_Q7, input_tilt;
Oct 6, 2019
Oct 6, 2019
88
89
90
opus_int decimated_framelength1, decimated_framelength2;
opus_int decimated_framelength;
opus_int dec_subframe_length, dec_subframe_offset, SNR_Q7, i, b, s;
91
92
opus_int32 sumSquared, smooth_coef_Q16;
opus_int16 HPstateTmp;
Oct 6, 2019
Oct 6, 2019
93
VARDECL( opus_int16, X );
94
95
96
opus_int32 Xnrg[ VAD_N_BANDS ];
opus_int32 NrgToNoiseRatio_Q8[ VAD_N_BANDS ];
opus_int32 speech_nrg, x_tmp;
Oct 6, 2019
Oct 6, 2019
97
opus_int X_offset[ VAD_N_BANDS ];
98
99
opus_int ret = 0;
silk_VAD_state *psSilk_VAD = &psEncC->sVAD;
Oct 6, 2019
Oct 6, 2019
100
SAVE_STACK;
101
102
103
/* Safety checks */
silk_assert( VAD_N_BANDS == 4 );
Oct 6, 2019
Oct 6, 2019
104
105
106
celt_assert( MAX_FRAME_LENGTH >= psEncC->frame_length );
celt_assert( psEncC->frame_length <= 512 );
celt_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) );
107
108
109
110
/***********************/
/* Filter and Decimate */
/***********************/
Oct 6, 2019
Oct 6, 2019
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
decimated_framelength1 = silk_RSHIFT( psEncC->frame_length, 1 );
decimated_framelength2 = silk_RSHIFT( psEncC->frame_length, 2 );
decimated_framelength = silk_RSHIFT( psEncC->frame_length, 3 );
/* Decimate into 4 bands:
0 L 3L L 3L 5L
- -- - -- --
8 8 2 4 4
[0-1 kHz| temp. |1-2 kHz| 2-4 kHz | 4-8 kHz |
They're arranged to allow the minimal ( frame_length / 4 ) extra
scratch space during the downsampling process */
X_offset[ 0 ] = 0;
X_offset[ 1 ] = decimated_framelength + decimated_framelength2;
X_offset[ 2 ] = X_offset[ 1 ] + decimated_framelength;
X_offset[ 3 ] = X_offset[ 2 ] + decimated_framelength2;
ALLOC( X, X_offset[ 3 ] + decimated_framelength1, opus_int16 );
129
/* 0-8 kHz to 0-4 kHz and 4-8 kHz */
Oct 6, 2019
Oct 6, 2019
130
131
silk_ana_filt_bank_1( pIn, &psSilk_VAD->AnaState[ 0 ],
X, &X[ X_offset[ 3 ] ], psEncC->frame_length );
132
133
/* 0-4 kHz to 0-2 kHz and 2-4 kHz */
Oct 6, 2019
Oct 6, 2019
134
135
silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState1[ 0 ],
X, &X[ X_offset[ 2 ] ], decimated_framelength1 );
136
137
/* 0-2 kHz to 0-1 kHz and 1-2 kHz */
Oct 6, 2019
Oct 6, 2019
138
139
silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState2[ 0 ],
X, &X[ X_offset[ 1 ] ], decimated_framelength2 );
140
141
142
143
/*********************************************/
/* HP filter on lowest band (differentiator) */
/*********************************************/
Oct 6, 2019
Oct 6, 2019
144
145
X[ decimated_framelength - 1 ] = silk_RSHIFT( X[ decimated_framelength - 1 ], 1 );
HPstateTmp = X[ decimated_framelength - 1 ];
146
for( i = decimated_framelength - 1; i > 0; i-- ) {
Oct 6, 2019
Oct 6, 2019
147
148
X[ i - 1 ] = silk_RSHIFT( X[ i - 1 ], 1 );
X[ i ] -= X[ i - 1 ];
Oct 6, 2019
Oct 6, 2019
150
X[ 0 ] -= psSilk_VAD->HPstate;
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
psSilk_VAD->HPstate = HPstateTmp;
/*************************************/
/* Calculate the energy in each band */
/*************************************/
for( b = 0; b < VAD_N_BANDS; b++ ) {
/* Find the decimated framelength in the non-uniformly divided bands */
decimated_framelength = silk_RSHIFT( psEncC->frame_length, silk_min_int( VAD_N_BANDS - b, VAD_N_BANDS - 1 ) );
/* Split length into subframe lengths */
dec_subframe_length = silk_RSHIFT( decimated_framelength, VAD_INTERNAL_SUBFRAMES_LOG2 );
dec_subframe_offset = 0;
/* Compute energy per sub-frame */
/* initialize with summed energy of last subframe */
Xnrg[ b ] = psSilk_VAD->XnrgSubfr[ b ];
for( s = 0; s < VAD_INTERNAL_SUBFRAMES; s++ ) {
sumSquared = 0;
for( i = 0; i < dec_subframe_length; i++ ) {
/* The energy will be less than dec_subframe_length * ( silk_int16_MIN / 8 ) ^ 2. */
/* Therefore we can accumulate with no risk of overflow (unless dec_subframe_length > 128) */
Oct 6, 2019
Oct 6, 2019
172
173
x_tmp = silk_RSHIFT(
X[ X_offset[ b ] + i + dec_subframe_offset ], 3 );
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
sumSquared = silk_SMLABB( sumSquared, x_tmp, x_tmp );
/* Safety check */
silk_assert( sumSquared >= 0 );
}
/* Add/saturate summed energy of current subframe */
if( s < VAD_INTERNAL_SUBFRAMES - 1 ) {
Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], sumSquared );
} else {
/* Look-ahead subframe */
Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], silk_RSHIFT( sumSquared, 1 ) );
}
dec_subframe_offset += dec_subframe_length;
}
psSilk_VAD->XnrgSubfr[ b ] = sumSquared;
}
/********************/
/* Noise estimation */
/********************/
silk_VAD_GetNoiseLevels( &Xnrg[ 0 ], psSilk_VAD );
/***********************************************/
/* Signal-plus-noise to noise ratio estimation */
/***********************************************/
sumSquared = 0;
input_tilt = 0;
for( b = 0; b < VAD_N_BANDS; b++ ) {
speech_nrg = Xnrg[ b ] - psSilk_VAD->NL[ b ];
if( speech_nrg > 0 ) {
/* Divide, with sufficient resolution */
if( ( Xnrg[ b ] & 0xFF800000 ) == 0 ) {
NrgToNoiseRatio_Q8[ b ] = silk_DIV32( silk_LSHIFT( Xnrg[ b ], 8 ), psSilk_VAD->NL[ b ] + 1 );
} else {
NrgToNoiseRatio_Q8[ b ] = silk_DIV32( Xnrg[ b ], silk_RSHIFT( psSilk_VAD->NL[ b ], 8 ) + 1 );
}
/* Convert to log domain */
SNR_Q7 = silk_lin2log( NrgToNoiseRatio_Q8[ b ] ) - 8 * 128;
/* Sum-of-squares */
sumSquared = silk_SMLABB( sumSquared, SNR_Q7, SNR_Q7 ); /* Q14 */
/* Tilt measure */
if( speech_nrg < ( (opus_int32)1 << 20 ) ) {
/* Scale down SNR value for small subband speech energies */
SNR_Q7 = silk_SMULWB( silk_LSHIFT( silk_SQRT_APPROX( speech_nrg ), 6 ), SNR_Q7 );
}
input_tilt = silk_SMLAWB( input_tilt, tiltWeights[ b ], SNR_Q7 );
} else {
NrgToNoiseRatio_Q8[ b ] = 256;
}
}
/* Mean-of-squares */
sumSquared = silk_DIV32_16( sumSquared, VAD_N_BANDS ); /* Q14 */
/* Root-mean-square approximation, scale to dBs, and write to output pointer */
pSNR_dB_Q7 = (opus_int16)( 3 * silk_SQRT_APPROX( sumSquared ) ); /* Q7 */
/*********************************/
/* Speech Probability Estimation */
/*********************************/
SA_Q15 = silk_sigm_Q15( silk_SMULWB( VAD_SNR_FACTOR_Q16, pSNR_dB_Q7 ) - VAD_NEGATIVE_OFFSET_Q5 );
/**************************/
/* Frequency Tilt Measure */
/**************************/
psEncC->input_tilt_Q15 = silk_LSHIFT( silk_sigm_Q15( input_tilt ) - 16384, 1 );
/**************************************************/
/* Scale the sigmoid output based on power levels */
/**************************************************/
speech_nrg = 0;
for( b = 0; b < VAD_N_BANDS; b++ ) {
/* Accumulate signal-without-noise energies, higher frequency bands have more weight */
speech_nrg += ( b + 1 ) * silk_RSHIFT( Xnrg[ b ] - psSilk_VAD->NL[ b ], 4 );
}
Oct 6, 2019
Oct 6, 2019
255
256
257
if( psEncC->frame_length == 20 * psEncC->fs_kHz ) {
speech_nrg = silk_RSHIFT32( speech_nrg, 1 );
}
258
259
260
/* Power scaling */
if( speech_nrg <= 0 ) {
SA_Q15 = silk_RSHIFT( SA_Q15, 1 );
Oct 6, 2019
Oct 6, 2019
261
262
} else if( speech_nrg < 16384 ) {
speech_nrg = silk_LSHIFT32( speech_nrg, 16 );
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
/* square-root */
speech_nrg = silk_SQRT_APPROX( speech_nrg );
SA_Q15 = silk_SMULWB( 32768 + speech_nrg, SA_Q15 );
}
/* Copy the resulting speech activity in Q8 */
psEncC->speech_activity_Q8 = silk_min_int( silk_RSHIFT( SA_Q15, 7 ), silk_uint8_MAX );
/***********************************/
/* Energy Level and SNR estimation */
/***********************************/
/* Smoothing coefficient */
smooth_coef_Q16 = silk_SMULWB( VAD_SNR_SMOOTH_COEF_Q18, silk_SMULWB( (opus_int32)SA_Q15, SA_Q15 ) );
if( psEncC->frame_length == 10 * psEncC->fs_kHz ) {
smooth_coef_Q16 >>= 1;
}
for( b = 0; b < VAD_N_BANDS; b++ ) {
/* compute smoothed energy-to-noise ratio per band */
psSilk_VAD->NrgRatioSmth_Q8[ b ] = silk_SMLAWB( psSilk_VAD->NrgRatioSmth_Q8[ b ],
NrgToNoiseRatio_Q8[ b ] - psSilk_VAD->NrgRatioSmth_Q8[ b ], smooth_coef_Q16 );
/* signal to noise ratio in dB per band */
SNR_Q7 = 3 * ( silk_lin2log( psSilk_VAD->NrgRatioSmth_Q8[b] ) - 8 * 128 );
/* quality = sigmoid( 0.25 * ( SNR_dB - 16 ) ); */
psEncC->input_quality_bands_Q15[ b ] = silk_sigm_Q15( silk_RSHIFT( SNR_Q7 - 16 * 128, 4 ) );
}
Oct 6, 2019
Oct 6, 2019
293
RESTORE_STACK;
294
295
296
297
298
299
return( ret );
}
/**************************/
/* Noise level estimation */
/**************************/
Oct 6, 2019
Oct 6, 2019
300
301
302
303
# if !defined(OPUS_X86_MAY_HAVE_SSE4_1)
static OPUS_INLINE
#endif
void silk_VAD_GetNoiseLevels(
304
305
306
307
308
309
310
311
312
313
314
const opus_int32 pX[ VAD_N_BANDS ], /* I subband energies */
silk_VAD_state *psSilk_VAD /* I/O Pointer to Silk VAD state */
)
{
opus_int k;
opus_int32 nl, nrg, inv_nrg;
opus_int coef, min_coef;
/* Initially faster smoothing */
if( psSilk_VAD->counter < 1000 ) { /* 1000 = 20 sec */
min_coef = silk_DIV32_16( silk_int16_MAX, silk_RSHIFT( psSilk_VAD->counter, 4 ) + 1 );
Oct 6, 2019
Oct 6, 2019
315
316
/* Increment frame counter */
psSilk_VAD->counter++;
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
} else {
min_coef = 0;
}
for( k = 0; k < VAD_N_BANDS; k++ ) {
/* Get old noise level estimate for current band */
nl = psSilk_VAD->NL[ k ];
silk_assert( nl >= 0 );
/* Add bias */
nrg = silk_ADD_POS_SAT32( pX[ k ], psSilk_VAD->NoiseLevelBias[ k ] );
silk_assert( nrg > 0 );
/* Invert energies */
inv_nrg = silk_DIV32( silk_int32_MAX, nrg );
silk_assert( inv_nrg >= 0 );
/* Less update when subband energy is high */
if( nrg > silk_LSHIFT( nl, 3 ) ) {
coef = VAD_NOISE_LEVEL_SMOOTH_COEF_Q16 >> 3;
} else if( nrg < nl ) {
coef = VAD_NOISE_LEVEL_SMOOTH_COEF_Q16;
} else {
coef = silk_SMULWB( silk_SMULWW( inv_nrg, nl ), VAD_NOISE_LEVEL_SMOOTH_COEF_Q16 << 1 );
}
/* Initially faster smoothing */
coef = silk_max_int( coef, min_coef );
/* Smooth inverse energies */
psSilk_VAD->inv_NL[ k ] = silk_SMLAWB( psSilk_VAD->inv_NL[ k ], inv_nrg - psSilk_VAD->inv_NL[ k ], coef );
silk_assert( psSilk_VAD->inv_NL[ k ] >= 0 );
/* Compute noise level by inverting again */
nl = silk_DIV32( silk_int32_MAX, psSilk_VAD->inv_NL[ k ] );
silk_assert( nl >= 0 );
/* Limit noise levels (guarantee 7 bits of head room) */
nl = silk_min( nl, 0x00FFFFFF );
/* Store as part of state */
psSilk_VAD->NL[ k ] = nl;
}
}