Skip to content

Latest commit

 

History

History
260 lines (216 loc) · 8.24 KB

config.h

File metadata and controls

260 lines (216 loc) · 8.24 KB
 
Oct 21, 1999
Oct 21, 1999
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
TiMidity -- Experimental MIDI to WAVE converter
Copyright (C) 1995 Tuukka Toivonen <toivonen@clinet.fi>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* This is for use with the SDL library */
#define SDL
Aug 10, 2000
Aug 10, 2000
22
#if (defined(WIN32) || defined(_WIN32)) && !defined(__WIN32__)
Jul 3, 2000
Jul 3, 2000
23
24
#define __WIN32__
#endif
Oct 21, 1999
Oct 21, 1999
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/* When a patch file can't be opened, one of these extensions is
appended to the filename and the open is tried again.
*/
#define PATCH_EXT_LIST { ".pat", 0 }
/* Acoustic Grand Piano seems to be the usual default instrument. */
#define DEFAULT_PROGRAM 0
/* 9 here is MIDI channel 10, which is the standard percussion channel.
Some files (notably C:\WINDOWS\CANYON.MID) think that 16 is one too.
On the other hand, some files know that 16 is not a drum channel and
try to play music on it. This is now a runtime option, so this isn't
a critical choice anymore. */
#define DEFAULT_DRUMCHANNELS ((1<<9) | (1<<15))
/* A somewhat arbitrary frequency range. The low end of this will
sound terrible as no lowpass filtering is performed on most
instruments before resampling. */
#define MIN_OUTPUT_RATE 4000
#define MAX_OUTPUT_RATE 65000
/* In percent. */
#define DEFAULT_AMPLIFICATION 70
/* Default sampling rate, default polyphony, and maximum polyphony.
All but the last can be overridden from the command line. */
#define DEFAULT_RATE 32000
#define DEFAULT_VOICES 32
#define MAX_VOICES 48
/* 1000 here will give a control ratio of 22:1 with 22 kHz output.
Higher CONTROLS_PER_SECOND values allow more accurate rendering
of envelopes and tremolo. The cost is CPU time. */
#define CONTROLS_PER_SECOND 1000
/* Strongly recommended. This option increases CPU usage by half, but
without it sound quality is very poor. */
#define LINEAR_INTERPOLATION
/* This is an experimental kludge that needs to be done right, but if
you've got an 8-bit sound card, or cheap multimedia speakers hooked
to your 16-bit output device, you should definitely give it a try.
Defining LOOKUP_HACK causes table lookups to be used in mixing
instead of multiplication. We convert the sample data to 8 bits at
load time and volumes to logarithmic 7-bit values before looking up
the product, which degrades sound quality noticeably.
Defining LOOKUP_HACK should save ~20% of CPU on an Intel machine.
LOOKUP_INTERPOLATION might give another ~5% */
/* #define LOOKUP_HACK
#define LOOKUP_INTERPOLATION */
/* Make envelopes twice as fast. Saves ~20% CPU time (notes decay
faster) and sounds more like a GUS. There is now a command line
option to toggle this as well. */
#define FAST_DECAY
/* How many bits to use for the fractional part of sample positions.
This affects tonal accuracy. The entire position counter must fit
in 32 bits, so with FRACTION_BITS equal to 12, the maximum size of
a sample is 1048576 samples (2 megabytes in memory). The GUS gets
by with just 9 bits and a little help from its friends...
"The GUS does not SUCK!!!" -- a happy user :) */
#define FRACTION_BITS 12
/* For some reason the sample volume is always set to maximum in all
patch files. Define this for a crude adjustment that may help
equalize instrument volumes. */
#define ADJUST_SAMPLE_VOLUMES
/* The number of samples to use for ramping out a dying note. Affects
click removal. */
#define MAX_DIE_TIME 20
/* On some machines (especially PCs without math coprocessors),
looking up sine values in a table will be significantly faster than
computing them on the fly. Uncomment this to use lookups. */
/* #define LOOKUP_SINE */
/* Shawn McHorse's resampling optimizations. These may not in fact be
faster on your particular machine and compiler. You'll have to run
a benchmark to find out. */
#define PRECALC_LOOPS
/* If calling ldexp() is faster than a floating point multiplication
on your machine/compiler/libm, uncomment this. It doesn't make much
difference either way, but hey -- it was on the TODO list, so it
got done. */
/* #define USE_LDEXP */
/**************************************************************************/
/* Anything below this shouldn't need to be changed unless you're porting
to a new machine with other than 32-bit, big-endian words. */
/**************************************************************************/
/* change FRACTION_BITS above, not these */
#define INTEGER_BITS (32 - FRACTION_BITS)
#define INTEGER_MASK (0xFFFFFFFF << FRACTION_BITS)
#define FRACTION_MASK (~ INTEGER_MASK)
/* This is enforced by some computations that must fit in an int */
#define MAX_CONTROL_RATIO 255
/* Byte order, defined in <machine/endian.h> for FreeBSD and DEC OSF/1 */
#ifdef DEC
#include <machine/endian.h>
#endif
#ifdef linux
/*
* Byte order is defined in <bytesex.h> as __BYTE_ORDER, that need to
* be checked against __LITTLE_ENDIAN and __BIG_ENDIAN defined in <endian.h>
* <endian.h> includes automagically <bytesex.h>
* for Linux.
*/
#include <endian.h>
/*
* We undef the two things to start with a clean situation
* (oddly enough, <endian.h> defines under certain conditions
* the two things below, as __LITTLE_ENDIAN and __BIG_ENDIAN, that
* are useless for our plans)
*/
#undef LITTLE_ENDIAN
#undef BIG_ENDIAN
# if __BYTE_ORDER == __LITTLE_ENDIAN
# define LITTLE_ENDIAN
# elif __BYTE_ORDER == __BIG_ENDIAN
# define BIG_ENDIAN
# else
# error No byte sex defined
# endif
#endif /* linux */
/* Win32 on Intel machines */
#ifdef __WIN32__
# define LITTLE_ENDIAN
#endif
/* DEC MMS has 64 bit long words */
#ifdef DEC
typedef unsigned int uint32;
typedef int int32;
#else
typedef unsigned long uint32;
typedef long int32;
#endif
typedef unsigned short uint16;
typedef short int16;
typedef unsigned char uint8;
typedef char int8;
/* Instrument files are little-endian, MIDI files big-endian, so we
need to do some conversions. */
#define XCHG_SHORT(x) ((((x)&0xFF)<<8) | (((x)>>8)&0xFF))
# define XCHG_LONG(x) ((((x)&0xFF)<<24) | \
(((x)&0xFF00)<<8) | \
(((x)&0xFF0000)>>8) | \
(((x)>>24)&0xFF))
#ifdef LITTLE_ENDIAN
#define LE_SHORT(x) x
#define LE_LONG(x) x
#define BE_SHORT(x) XCHG_SHORT(x)
#define BE_LONG(x) XCHG_LONG(x)
#else
#define BE_SHORT(x) x
#define BE_LONG(x) x
#define LE_SHORT(x) XCHG_SHORT(x)
#define LE_LONG(x) XCHG_LONG(x)
#endif
#define MAX_AMPLIFICATION 800
/* You could specify a complete path, e.g. "/etc/timidity.cfg", and
then specify the library directory in the configuration file. */
#define CONFIG_FILE "timidity.cfg"
#ifdef __WIN32__
#define DEFAULT_PATH "\\TIMIDITY"
#else
#define DEFAULT_PATH "/usr/local/lib/timidity"
#endif
/* These affect general volume */
#define GUARD_BITS 3
#define AMP_BITS (15-GUARD_BITS)
#ifdef LOOKUP_HACK
typedef int8 sample_t;
typedef uint8 final_volume_t;
# define FINAL_VOLUME(v) (~_l2u[v])
# define MIXUP_SHIFT 5
# define MAX_AMP_VALUE 4095
#else
typedef int16 sample_t;
typedef int32 final_volume_t;
# define FINAL_VOLUME(v) (v)
# define MAX_AMP_VALUE ((1<<(AMP_BITS+1))-1)
#endif
#ifdef USE_LDEXP
# define FSCALE(a,b) ldexp((a),(b))
# define FSCALENEG(a,b) ldexp((a),-(b))
#else
Feb 1, 2000
Feb 1, 2000
233
234
# define FSCALE(a,b) (float)((a) * (double)(1<<(b)))
# define FSCALENEG(a,b) (float)((a) * (1.0L / (double)(1<<(b))))
Oct 21, 1999
Oct 21, 1999
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#endif
/* Vibrato and tremolo Choices of the Day */
#define SWEEP_TUNING 38
#define VIBRATO_AMPLITUDE_TUNING 1.0L
#define VIBRATO_RATE_TUNING 38
#define TREMOLO_AMPLITUDE_TUNING 1.0L
#define TREMOLO_RATE_TUNING 38
#define SWEEP_SHIFT 16
#define RATE_SHIFT 5
#define VIBRATO_SAMPLE_INCREMENTS 32
#ifndef PI
#define PI 3.14159265358979323846
#endif
/* The path separator (D.M.) */
#ifdef __WIN32__
# define PATH_SEP '\\'
# define PATH_STRING "\\"
#else
# define PATH_SEP '/'
# define PATH_STRING "/"
#endif