Skip to content

Latest commit

 

History

History
1689 lines (1525 loc) · 56.6 KB

vp8l_dec.c

File metadata and controls

1689 lines (1525 loc) · 56.6 KB
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// main entry for the decoder
//
// Authors: Vikas Arora (vikaas.arora@gmail.com)
// Jyrki Alakuijala (jyrki@google.com)
#include <stdlib.h>
Oct 26, 2018
Oct 26, 2018
17
18
19
20
21
22
23
24
25
#include "src/dec/alphai_dec.h"
#include "src/dec/vp8li_dec.h"
#include "src/dsp/dsp.h"
#include "src/dsp/lossless.h"
#include "src/dsp/lossless_common.h"
#include "src/dsp/yuv.h"
#include "src/utils/endian_inl_utils.h"
#include "src/utils/huffman_utils.h"
#include "src/utils/utils.h"
26
27
28
29
30
#define NUM_ARGB_CACHE_ROWS 16
static const int kCodeLengthLiterals = 16;
static const int kCodeLengthRepeatCode = 16;
Oct 26, 2018
Oct 26, 2018
31
32
static const uint8_t kCodeLengthExtraBits[3] = { 2, 3, 7 };
static const uint8_t kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
// -----------------------------------------------------------------------------
// Five Huffman codes are used at each meta code:
// 1. green + length prefix codes + color cache codes,
// 2. alpha,
// 3. red,
// 4. blue, and,
// 5. distance prefix codes.
typedef enum {
GREEN = 0,
RED = 1,
BLUE = 2,
ALPHA = 3,
DIST = 4
} HuffIndex;
static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
NUM_LITERAL_CODES + NUM_LENGTH_CODES,
NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
NUM_DISTANCE_CODES
};
static const uint8_t kLiteralMap[HUFFMAN_CODES_PER_META_CODE] = {
0, 1, 1, 1, 0
};
#define NUM_CODE_LENGTH_CODES 19
static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
};
#define CODE_TO_PLANE_CODES 120
static const uint8_t kCodeToPlane[CODE_TO_PLANE_CODES] = {
0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
};
// Memory needed for lookup tables of one Huffman tree group. Red, blue, alpha
// and distance alphabets are constant (256 for red, blue and alpha, 40 for
// distance) and lookup table sizes for them in worst case are 630 and 410
// respectively. Size of green alphabet depends on color cache size and is equal
// to 256 (green component values) + 24 (length prefix values)
// + color_cache_size (between 0 and 2048).
// All values computed for 8-bit first level lookup with Mark Adler's tool:
// http://www.hdfgroup.org/ftp/lib-external/zlib/zlib-1.2.5/examples/enough.c
#define FIXED_TABLE_SIZE (630 * 3 + 410)
Oct 26, 2018
Oct 26, 2018
89
static const uint16_t kTableSize[12] = {
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
FIXED_TABLE_SIZE + 654,
FIXED_TABLE_SIZE + 656,
FIXED_TABLE_SIZE + 658,
FIXED_TABLE_SIZE + 662,
FIXED_TABLE_SIZE + 670,
FIXED_TABLE_SIZE + 686,
FIXED_TABLE_SIZE + 718,
FIXED_TABLE_SIZE + 782,
FIXED_TABLE_SIZE + 912,
FIXED_TABLE_SIZE + 1168,
FIXED_TABLE_SIZE + 1680,
FIXED_TABLE_SIZE + 2704
};
static int DecodeImageStream(int xsize, int ysize,
int is_level0,
VP8LDecoder* const dec,
uint32_t** const decoded_data);
//------------------------------------------------------------------------------
int VP8LCheckSignature(const uint8_t* const data, size_t size) {
return (size >= VP8L_FRAME_HEADER_SIZE &&
data[0] == VP8L_MAGIC_BYTE &&
(data[4] >> 5) == 0); // version
}
static int ReadImageInfo(VP8LBitReader* const br,
int* const width, int* const height,
int* const has_alpha) {
if (VP8LReadBits(br, 8) != VP8L_MAGIC_BYTE) return 0;
*width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
*height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
*has_alpha = VP8LReadBits(br, 1);
if (VP8LReadBits(br, VP8L_VERSION_BITS) != 0) return 0;
return !br->eos_;
}
int VP8LGetInfo(const uint8_t* data, size_t data_size,
int* const width, int* const height, int* const has_alpha) {
if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
return 0; // not enough data
} else if (!VP8LCheckSignature(data, data_size)) {
return 0; // bad signature
} else {
int w, h, a;
VP8LBitReader br;
VP8LInitBitReader(&br, data, data_size);
if (!ReadImageInfo(&br, &w, &h, &a)) {
return 0;
}
if (width != NULL) *width = w;
if (height != NULL) *height = h;
if (has_alpha != NULL) *has_alpha = a;
return 1;
}
}
//------------------------------------------------------------------------------
static WEBP_INLINE int GetCopyDistance(int distance_symbol,
VP8LBitReader* const br) {
int extra_bits, offset;
if (distance_symbol < 4) {
return distance_symbol + 1;
}
extra_bits = (distance_symbol - 2) >> 1;
offset = (2 + (distance_symbol & 1)) << extra_bits;
return offset + VP8LReadBits(br, extra_bits) + 1;
}
static WEBP_INLINE int GetCopyLength(int length_symbol,
VP8LBitReader* const br) {
// Length and distance prefixes are encoded the same way.
return GetCopyDistance(length_symbol, br);
}
static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
if (plane_code > CODE_TO_PLANE_CODES) {
return plane_code - CODE_TO_PLANE_CODES;
} else {
const int dist_code = kCodeToPlane[plane_code - 1];
const int yoffset = dist_code >> 4;
const int xoffset = 8 - (dist_code & 0xf);
const int dist = yoffset * xsize + xoffset;
return (dist >= 1) ? dist : 1; // dist<1 can happen if xsize is very small
}
}
//------------------------------------------------------------------------------
// Decodes the next Huffman code from bit-stream.
// FillBitWindow(br) needs to be called at minimum every second call
// to ReadSymbol, in order to pre-fetch enough bits.
static WEBP_INLINE int ReadSymbol(const HuffmanCode* table,
VP8LBitReader* const br) {
int nbits;
uint32_t val = VP8LPrefetchBits(br);
table += val & HUFFMAN_TABLE_MASK;
nbits = table->bits - HUFFMAN_TABLE_BITS;
if (nbits > 0) {
VP8LSetBitPos(br, br->bit_pos_ + HUFFMAN_TABLE_BITS);
val = VP8LPrefetchBits(br);
table += table->value;
table += val & ((1 << nbits) - 1);
}
VP8LSetBitPos(br, br->bit_pos_ + table->bits);
return table->value;
}
// Reads packed symbol depending on GREEN channel
#define BITS_SPECIAL_MARKER 0x100 // something large enough (and a bit-mask)
#define PACKED_NON_LITERAL_CODE 0 // must be < NUM_LITERAL_CODES
static WEBP_INLINE int ReadPackedSymbols(const HTreeGroup* group,
VP8LBitReader* const br,
uint32_t* const dst) {
const uint32_t val = VP8LPrefetchBits(br) & (HUFFMAN_PACKED_TABLE_SIZE - 1);
const HuffmanCode32 code = group->packed_table[val];
assert(group->use_packed_table);
if (code.bits < BITS_SPECIAL_MARKER) {
VP8LSetBitPos(br, br->bit_pos_ + code.bits);
*dst = code.value;
return PACKED_NON_LITERAL_CODE;
} else {
VP8LSetBitPos(br, br->bit_pos_ + code.bits - BITS_SPECIAL_MARKER);
assert(code.value >= NUM_LITERAL_CODES);
return code.value;
}
}
static int AccumulateHCode(HuffmanCode hcode, int shift,
HuffmanCode32* const huff) {
huff->bits += hcode.bits;
huff->value |= (uint32_t)hcode.value << shift;
assert(huff->bits <= HUFFMAN_TABLE_BITS);
return hcode.bits;
}
static void BuildPackedTable(HTreeGroup* const htree_group) {
uint32_t code;
for (code = 0; code < HUFFMAN_PACKED_TABLE_SIZE; ++code) {
uint32_t bits = code;
HuffmanCode32* const huff = &htree_group->packed_table[bits];
HuffmanCode hcode = htree_group->htrees[GREEN][bits];
if (hcode.value >= NUM_LITERAL_CODES) {
huff->bits = hcode.bits + BITS_SPECIAL_MARKER;
huff->value = hcode.value;
} else {
huff->bits = 0;
huff->value = 0;
bits >>= AccumulateHCode(hcode, 8, huff);
bits >>= AccumulateHCode(htree_group->htrees[RED][bits], 16, huff);
bits >>= AccumulateHCode(htree_group->htrees[BLUE][bits], 0, huff);
bits >>= AccumulateHCode(htree_group->htrees[ALPHA][bits], 24, huff);
(void)bits;
}
}
}
static int ReadHuffmanCodeLengths(
VP8LDecoder* const dec, const int* const code_length_code_lengths,
int num_symbols, int* const code_lengths) {
int ok = 0;
VP8LBitReader* const br = &dec->br_;
int symbol;
int max_symbol;
int prev_code_len = DEFAULT_CODE_LENGTH;
HuffmanCode table[1 << LENGTHS_TABLE_BITS];
if (!VP8LBuildHuffmanTable(table, LENGTHS_TABLE_BITS,
code_length_code_lengths,
NUM_CODE_LENGTH_CODES)) {
goto End;
}
if (VP8LReadBits(br, 1)) { // use length
const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
max_symbol = 2 + VP8LReadBits(br, length_nbits);
if (max_symbol > num_symbols) {
goto End;
}
} else {
max_symbol = num_symbols;
}
symbol = 0;
while (symbol < num_symbols) {
const HuffmanCode* p;
int code_len;
if (max_symbol-- == 0) break;
VP8LFillBitWindow(br);
p = &table[VP8LPrefetchBits(br) & LENGTHS_TABLE_MASK];
VP8LSetBitPos(br, br->bit_pos_ + p->bits);
code_len = p->value;
if (code_len < kCodeLengthLiterals) {
code_lengths[symbol++] = code_len;
if (code_len != 0) prev_code_len = code_len;
} else {
const int use_prev = (code_len == kCodeLengthRepeatCode);
const int slot = code_len - kCodeLengthLiterals;
const int extra_bits = kCodeLengthExtraBits[slot];
const int repeat_offset = kCodeLengthRepeatOffsets[slot];
int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
if (symbol + repeat > num_symbols) {
goto End;
} else {
const int length = use_prev ? prev_code_len : 0;
while (repeat-- > 0) code_lengths[symbol++] = length;
}
}
}
ok = 1;
End:
if (!ok) dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
return ok;
}
// 'code_lengths' is pre-allocated temporary buffer, used for creating Huffman
// tree.
static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
int* const code_lengths, HuffmanCode* const table) {
int ok = 0;
int size = 0;
VP8LBitReader* const br = &dec->br_;
const int simple_code = VP8LReadBits(br, 1);
memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths));
if (simple_code) { // Read symbols, codes & code lengths directly.
const int num_symbols = VP8LReadBits(br, 1) + 1;
const int first_symbol_len_code = VP8LReadBits(br, 1);
// The first code is either 1 bit or 8 bit code.
int symbol = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
code_lengths[symbol] = 1;
// The second code (if present), is always 8 bit long.
if (num_symbols == 2) {
symbol = VP8LReadBits(br, 8);
code_lengths[symbol] = 1;
}
ok = 1;
} else { // Decode Huffman-coded code lengths.
int i;
int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
const int num_codes = VP8LReadBits(br, 4) + 4;
if (num_codes > NUM_CODE_LENGTH_CODES) {
dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
return 0;
}
for (i = 0; i < num_codes; ++i) {
code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
}
ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
code_lengths);
}
ok = ok && !br->eos_;
if (ok) {
size = VP8LBuildHuffmanTable(table, HUFFMAN_TABLE_BITS,
code_lengths, alphabet_size);
}
if (!ok || size == 0) {
dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
return 0;
}
return size;
}
static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
int color_cache_bits, int allow_recursion) {
int i, j;
VP8LBitReader* const br = &dec->br_;
VP8LMetadata* const hdr = &dec->hdr_;
uint32_t* huffman_image = NULL;
HTreeGroup* htree_groups = NULL;
HuffmanCode* huffman_tables = NULL;
HuffmanCode* next = NULL;
int num_htree_groups = 1;
int max_alphabet_size = 0;
int* code_lengths = NULL;
const int table_size = kTableSize[color_cache_bits];
if (allow_recursion && VP8LReadBits(br, 1)) {
// use meta Huffman codes.
const int huffman_precision = VP8LReadBits(br, 3) + 2;
const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
const int huffman_pixs = huffman_xsize * huffman_ysize;
if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
&huffman_image)) {
goto Error;
}
hdr->huffman_subsample_bits_ = huffman_precision;
for (i = 0; i < huffman_pixs; ++i) {
// The huffman data is stored in red and green bytes.
const int group = (huffman_image[i] >> 8) & 0xffff;
huffman_image[i] = group;
if (group >= num_htree_groups) {
num_htree_groups = group + 1;
}
}
}
if (br->eos_) goto Error;
// Find maximum alphabet size for the htree group.
for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
int alphabet_size = kAlphabetSize[j];
if (j == 0 && color_cache_bits > 0) {
alphabet_size += 1 << color_cache_bits;
}
if (max_alphabet_size < alphabet_size) {
max_alphabet_size = alphabet_size;
}
}
huffman_tables = (HuffmanCode*)WebPSafeMalloc(num_htree_groups * table_size,
sizeof(*huffman_tables));
htree_groups = VP8LHtreeGroupsNew(num_htree_groups);
code_lengths = (int*)WebPSafeCalloc((uint64_t)max_alphabet_size,
sizeof(*code_lengths));
if (htree_groups == NULL || code_lengths == NULL || huffman_tables == NULL) {
dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
goto Error;
}
next = huffman_tables;
for (i = 0; i < num_htree_groups; ++i) {
HTreeGroup* const htree_group = &htree_groups[i];
HuffmanCode** const htrees = htree_group->htrees;
int size;
int total_size = 0;
int is_trivial_literal = 1;
int max_bits = 0;
for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
int alphabet_size = kAlphabetSize[j];
htrees[j] = next;
if (j == 0 && color_cache_bits > 0) {
alphabet_size += 1 << color_cache_bits;
}
size = ReadHuffmanCode(alphabet_size, dec, code_lengths, next);
if (size == 0) {
goto Error;
}
if (is_trivial_literal && kLiteralMap[j] == 1) {
is_trivial_literal = (next->bits == 0);
}
total_size += next->bits;
next += size;
if (j <= ALPHA) {
int local_max_bits = code_lengths[0];
int k;
for (k = 1; k < alphabet_size; ++k) {
if (code_lengths[k] > local_max_bits) {
local_max_bits = code_lengths[k];
}
}
max_bits += local_max_bits;
}
}
htree_group->is_trivial_literal = is_trivial_literal;
htree_group->is_trivial_code = 0;
if (is_trivial_literal) {
const int red = htrees[RED][0].value;
const int blue = htrees[BLUE][0].value;
const int alpha = htrees[ALPHA][0].value;
htree_group->literal_arb =
((uint32_t)alpha << 24) | (red << 16) | blue;
if (total_size == 0 && htrees[GREEN][0].value < NUM_LITERAL_CODES) {
htree_group->is_trivial_code = 1;
htree_group->literal_arb |= htrees[GREEN][0].value << 8;
}
}
htree_group->use_packed_table = !htree_group->is_trivial_code &&
(max_bits < HUFFMAN_PACKED_BITS);
if (htree_group->use_packed_table) BuildPackedTable(htree_group);
}
WebPSafeFree(code_lengths);
// All OK. Finalize pointers and return.
hdr->huffman_image_ = huffman_image;
hdr->num_htree_groups_ = num_htree_groups;
hdr->htree_groups_ = htree_groups;
hdr->huffman_tables_ = huffman_tables;
return 1;
Error:
WebPSafeFree(code_lengths);
WebPSafeFree(huffman_image);
WebPSafeFree(huffman_tables);
VP8LHtreeGroupsFree(htree_groups);
return 0;
}
//------------------------------------------------------------------------------
// Scaling.
Oct 26, 2018
Oct 26, 2018
488
#if !defined(WEBP_REDUCE_SIZE)
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
const int num_channels = 4;
const int in_width = io->mb_w;
const int out_width = io->scaled_width;
const int in_height = io->mb_h;
const int out_height = io->scaled_height;
const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
rescaler_t* work; // Rescaler work area.
const uint64_t scaled_data_size = (uint64_t)out_width;
uint32_t* scaled_data; // Temporary storage for scaled BGRA data.
const uint64_t memory_size = sizeof(*dec->rescaler) +
work_size * sizeof(*work) +
scaled_data_size * sizeof(*scaled_data);
uint8_t* memory = (uint8_t*)WebPSafeMalloc(memory_size, sizeof(*memory));
if (memory == NULL) {
dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
return 0;
}
assert(dec->rescaler_memory == NULL);
dec->rescaler_memory = memory;
dec->rescaler = (WebPRescaler*)memory;
memory += sizeof(*dec->rescaler);
work = (rescaler_t*)memory;
memory += work_size * sizeof(*work);
scaled_data = (uint32_t*)memory;
WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
out_width, out_height, 0, num_channels, work);
return 1;
}
Oct 26, 2018
Oct 26, 2018
520
#endif // WEBP_REDUCE_SIZE
521
522
523
524
//------------------------------------------------------------------------------
// Export to ARGB
Oct 26, 2018
Oct 26, 2018
525
526
#if !defined(WEBP_REDUCE_SIZE)
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
// We have special "export" function since we need to convert from BGRA
static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
int rgba_stride, uint8_t* const rgba) {
uint32_t* const src = (uint32_t*)rescaler->dst;
const int dst_width = rescaler->dst_width;
int num_lines_out = 0;
while (WebPRescalerHasPendingOutput(rescaler)) {
uint8_t* const dst = rgba + num_lines_out * rgba_stride;
WebPRescalerExportRow(rescaler);
WebPMultARGBRow(src, dst_width, 1);
VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
++num_lines_out;
}
return num_lines_out;
}
// Emit scaled rows.
static int EmitRescaledRowsRGBA(const VP8LDecoder* const dec,
uint8_t* in, int in_stride, int mb_h,
uint8_t* const out, int out_stride) {
const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
int num_lines_in = 0;
int num_lines_out = 0;
while (num_lines_in < mb_h) {
uint8_t* const row_in = in + num_lines_in * in_stride;
uint8_t* const row_out = out + num_lines_out * out_stride;
const int lines_left = mb_h - num_lines_in;
const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
int lines_imported;
assert(needed_lines > 0 && needed_lines <= lines_left);
WebPMultARGBRows(row_in, in_stride,
dec->rescaler->src_width, needed_lines, 0);
lines_imported =
WebPRescalerImport(dec->rescaler, lines_left, row_in, in_stride);
assert(lines_imported == needed_lines);
num_lines_in += lines_imported;
num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
}
return num_lines_out;
}
Oct 26, 2018
Oct 26, 2018
568
569
#endif // WEBP_REDUCE_SIZE
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
// Emit rows without any scaling.
static int EmitRows(WEBP_CSP_MODE colorspace,
const uint8_t* row_in, int in_stride,
int mb_w, int mb_h,
uint8_t* const out, int out_stride) {
int lines = mb_h;
uint8_t* row_out = out;
while (lines-- > 0) {
VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
row_in += in_stride;
row_out += out_stride;
}
return mb_h; // Num rows out == num rows in.
}
//------------------------------------------------------------------------------
// Export to YUVA
static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
const WebPDecBuffer* const output) {
const WebPYUVABuffer* const buf = &output->u.YUVA;
// first, the luma plane
WebPConvertARGBToY(src, buf->y + y_pos * buf->y_stride, width);
// then U/V planes
{
uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
// even lines: store values
// odd lines: average with previous values
WebPConvertARGBToUV(src, u, v, width, !(y_pos & 1));
}
// Lastly, store alpha if needed.
if (buf->a != NULL) {
uint8_t* const a = buf->a + y_pos * buf->a_stride;
#if defined(WORDS_BIGENDIAN)
WebPExtractAlpha((uint8_t*)src + 0, 0, width, 1, a, 0);
#else
WebPExtractAlpha((uint8_t*)src + 3, 0, width, 1, a, 0);
#endif
}
}
static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
WebPRescaler* const rescaler = dec->rescaler;
uint32_t* const src = (uint32_t*)rescaler->dst;
const int dst_width = rescaler->dst_width;
int num_lines_out = 0;
while (WebPRescalerHasPendingOutput(rescaler)) {
WebPRescalerExportRow(rescaler);
WebPMultARGBRow(src, dst_width, 1);
ConvertToYUVA(src, dst_width, y_pos, dec->output_);
++y_pos;
++num_lines_out;
}
return num_lines_out;
}
static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
uint8_t* in, int in_stride, int mb_h) {
int num_lines_in = 0;
int y_pos = dec->last_out_row_;
while (num_lines_in < mb_h) {
const int lines_left = mb_h - num_lines_in;
const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
int lines_imported;
WebPMultARGBRows(in, in_stride, dec->rescaler->src_width, needed_lines, 0);
lines_imported =
WebPRescalerImport(dec->rescaler, lines_left, in, in_stride);
assert(lines_imported == needed_lines);
num_lines_in += lines_imported;
in += needed_lines * in_stride;
y_pos += ExportYUVA(dec, y_pos);
}
return y_pos;
}
static int EmitRowsYUVA(const VP8LDecoder* const dec,
const uint8_t* in, int in_stride,
int mb_w, int num_rows) {
int y_pos = dec->last_out_row_;
while (num_rows-- > 0) {
ConvertToYUVA((const uint32_t*)in, mb_w, y_pos, dec->output_);
in += in_stride;
++y_pos;
}
return y_pos;
}
//------------------------------------------------------------------------------
// Cropping.
// Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
// crop options. Also updates the input data pointer, so that it points to the
// start of the cropped window. Note that pixels are in ARGB format even if
// 'in_data' is uint8_t*.
// Returns true if the crop window is not empty.
static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
uint8_t** const in_data, int pixel_stride) {
assert(y_start < y_end);
assert(io->crop_left < io->crop_right);
if (y_end > io->crop_bottom) {
y_end = io->crop_bottom; // make sure we don't overflow on last row.
}
if (y_start < io->crop_top) {
const int delta = io->crop_top - y_start;
y_start = io->crop_top;
*in_data += delta * pixel_stride;
}
if (y_start >= y_end) return 0; // Crop window is empty.
*in_data += io->crop_left * sizeof(uint32_t);
io->mb_y = y_start - io->crop_top;
io->mb_w = io->crop_right - io->crop_left;
io->mb_h = y_end - y_start;
return 1; // Non-empty crop window.
}
//------------------------------------------------------------------------------
static WEBP_INLINE int GetMetaIndex(
const uint32_t* const image, int xsize, int bits, int x, int y) {
if (bits == 0) return 0;
return image[xsize * (y >> bits) + (x >> bits)];
}
static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
int x, int y) {
const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
hdr->huffman_subsample_bits_, x, y);
assert(meta_index < hdr->num_htree_groups_);
return hdr->htree_groups_ + meta_index;
}
//------------------------------------------------------------------------------
// Main loop, with custom row-processing function
typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
const uint32_t* const rows) {
int n = dec->next_transform_;
const int cache_pixs = dec->width_ * num_rows;
const int start_row = dec->last_row_;
const int end_row = start_row + num_rows;
const uint32_t* rows_in = rows;
uint32_t* const rows_out = dec->argb_cache_;
// Inverse transforms.
while (n-- > 0) {
VP8LTransform* const transform = &dec->transforms_[n];
VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
rows_in = rows_out;
}
if (rows_in != rows_out) {
// No transform called, hence just copy.
memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
}
}
// Processes (transforms, scales & color-converts) the rows decoded after the
// last call.
static void ProcessRows(VP8LDecoder* const dec, int row) {
const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_;
const int num_rows = row - dec->last_row_;
assert(row <= dec->io_->crop_bottom);
// We can't process more than NUM_ARGB_CACHE_ROWS at a time (that's the size
// of argb_cache_), but we currently don't need more than that.
assert(num_rows <= NUM_ARGB_CACHE_ROWS);
if (num_rows > 0) { // Emit output.
VP8Io* const io = dec->io_;
uint8_t* rows_data = (uint8_t*)dec->argb_cache_;
const int in_stride = io->width * sizeof(uint32_t); // in unit of RGBA
ApplyInverseTransforms(dec, num_rows, rows);
if (!SetCropWindow(io, dec->last_row_, row, &rows_data, in_stride)) {
// Nothing to output (this time).
} else {
const WebPDecBuffer* const output = dec->output_;
if (WebPIsRGBMode(output->colorspace)) { // convert to RGBA
const WebPRGBABuffer* const buf = &output->u.RGBA;
uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
Oct 26, 2018
Oct 26, 2018
755
756
757
const int num_rows_out =
#if !defined(WEBP_REDUCE_SIZE)
io->use_scaling ?
758
759
EmitRescaledRowsRGBA(dec, rows_data, in_stride, io->mb_h,
rgba, buf->stride) :
Oct 26, 2018
Oct 26, 2018
760
#endif // WEBP_REDUCE_SIZE
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
EmitRows(output->colorspace, rows_data, in_stride,
io->mb_w, io->mb_h, rgba, buf->stride);
// Update 'last_out_row_'.
dec->last_out_row_ += num_rows_out;
} else { // convert to YUVA
dec->last_out_row_ = io->use_scaling ?
EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
}
assert(dec->last_out_row_ <= output->height);
}
}
// Update 'last_row_'.
dec->last_row_ = row;
assert(dec->last_row_ <= dec->height_);
}
// Row-processing for the special case when alpha data contains only one
// transform (color indexing), and trivial non-green literals.
static int Is8bOptimizable(const VP8LMetadata* const hdr) {
int i;
if (hdr->color_cache_size_ > 0) return 0;
// When the Huffman tree contains only one symbol, we can skip the
// call to ReadSymbol() for red/blue/alpha channels.
for (i = 0; i < hdr->num_htree_groups_; ++i) {
HuffmanCode** const htrees = hdr->htree_groups_[i].htrees;
if (htrees[RED][0].bits > 0) return 0;
if (htrees[BLUE][0].bits > 0) return 0;
if (htrees[ALPHA][0].bits > 0) return 0;
}
return 1;
}
static void AlphaApplyFilter(ALPHDecoder* const alph_dec,
int first_row, int last_row,
uint8_t* out, int stride) {
if (alph_dec->filter_ != WEBP_FILTER_NONE) {
int y;
const uint8_t* prev_line = alph_dec->prev_line_;
assert(WebPUnfilters[alph_dec->filter_] != NULL);
for (y = first_row; y < last_row; ++y) {
WebPUnfilters[alph_dec->filter_](prev_line, out, out, stride);
prev_line = out;
out += stride;
}
alph_dec->prev_line_ = prev_line;
}
}
static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int last_row) {
// For vertical and gradient filtering, we need to decode the part above the
// crop_top row, in order to have the correct spatial predictors.
ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque;
const int top_row =
(alph_dec->filter_ == WEBP_FILTER_NONE ||
alph_dec->filter_ == WEBP_FILTER_HORIZONTAL) ? dec->io_->crop_top
: dec->last_row_;
const int first_row = (dec->last_row_ < top_row) ? top_row : dec->last_row_;
assert(last_row <= dec->io_->crop_bottom);
if (last_row > first_row) {
// Special method for paletted alpha data. We only process the cropped area.
const int width = dec->io_->width;
uint8_t* out = alph_dec->output_ + width * first_row;
const uint8_t* const in =
(uint8_t*)dec->pixels_ + dec->width_ * first_row;
VP8LTransform* const transform = &dec->transforms_[0];
assert(dec->next_transform_ == 1);
assert(transform->type_ == COLOR_INDEXING_TRANSFORM);
VP8LColorIndexInverseTransformAlpha(transform, first_row, last_row,
in, out);
AlphaApplyFilter(alph_dec, first_row, last_row, out, width);
}
dec->last_row_ = dec->last_out_row_ = last_row;
}
//------------------------------------------------------------------------------
// Helper functions for fast pattern copy (8b and 32b)
// cyclic rotation of pattern word
static WEBP_INLINE uint32_t Rotate8b(uint32_t V) {
#if defined(WORDS_BIGENDIAN)
return ((V & 0xff000000u) >> 24) | (V << 8);
#else
return ((V & 0xffu) << 24) | (V >> 8);
#endif
}
// copy 1, 2 or 4-bytes pattern
static WEBP_INLINE void CopySmallPattern8b(const uint8_t* src, uint8_t* dst,
int length, uint32_t pattern) {
int i;
// align 'dst' to 4-bytes boundary. Adjust the pattern along the way.
while ((uintptr_t)dst & 3) {
*dst++ = *src++;
pattern = Rotate8b(pattern);
--length;
}
// Copy the pattern 4 bytes at a time.
for (i = 0; i < (length >> 2); ++i) {
((uint32_t*)dst)[i] = pattern;
}
// Finish with left-overs. 'pattern' is still correctly positioned,
// so no Rotate8b() call is needed.
for (i <<= 2; i < length; ++i) {
dst[i] = src[i];
}
}
static WEBP_INLINE void CopyBlock8b(uint8_t* const dst, int dist, int length) {
const uint8_t* src = dst - dist;
if (length >= 8) {
uint32_t pattern = 0;
switch (dist) {
case 1:
pattern = src[0];
#if defined(__arm__) || defined(_M_ARM) // arm doesn't like multiply that much
pattern |= pattern << 8;
pattern |= pattern << 16;
#elif defined(WEBP_USE_MIPS_DSP_R2)
__asm__ volatile ("replv.qb %0, %0" : "+r"(pattern));
#else
pattern = 0x01010101u * pattern;
#endif
break;
case 2:
memcpy(&pattern, src, sizeof(uint16_t));
#if defined(__arm__) || defined(_M_ARM)
pattern |= pattern << 16;
#elif defined(WEBP_USE_MIPS_DSP_R2)
__asm__ volatile ("replv.ph %0, %0" : "+r"(pattern));
#else
pattern = 0x00010001u * pattern;
#endif
break;
case 4:
memcpy(&pattern, src, sizeof(uint32_t));
break;
default:
goto Copy;
break;
}
CopySmallPattern8b(src, dst, length, pattern);
return;
}
Copy:
if (dist >= length) { // no overlap -> use memcpy()
memcpy(dst, src, length * sizeof(*dst));
} else {
int i;
for (i = 0; i < length; ++i) dst[i] = src[i];
}
}
// copy pattern of 1 or 2 uint32_t's
static WEBP_INLINE void CopySmallPattern32b(const uint32_t* src,
uint32_t* dst,
int length, uint64_t pattern) {
int i;
if ((uintptr_t)dst & 4) { // Align 'dst' to 8-bytes boundary.
*dst++ = *src++;
pattern = (pattern >> 32) | (pattern << 32);
--length;
}
assert(0 == ((uintptr_t)dst & 7));
for (i = 0; i < (length >> 1); ++i) {
((uint64_t*)dst)[i] = pattern; // Copy the pattern 8 bytes at a time.
}
if (length & 1) { // Finish with left-over.
dst[i << 1] = src[i << 1];
}
}
static WEBP_INLINE void CopyBlock32b(uint32_t* const dst,
int dist, int length) {
const uint32_t* const src = dst - dist;
if (dist <= 2 && length >= 4 && ((uintptr_t)dst & 3) == 0) {
uint64_t pattern;
if (dist == 1) {
pattern = (uint64_t)src[0];
pattern |= pattern << 32;
} else {
memcpy(&pattern, src, sizeof(pattern));
}
CopySmallPattern32b(src, dst, length, pattern);
} else if (dist >= length) { // no overlap
memcpy(dst, src, length * sizeof(*dst));
} else {
int i;
for (i = 0; i < length; ++i) dst[i] = src[i];
}
}
//------------------------------------------------------------------------------
static int DecodeAlphaData(VP8LDecoder* const dec, uint8_t* const data,
int width, int height, int last_row) {
int ok = 1;
int row = dec->last_pixel_ / width;
int col = dec->last_pixel_ % width;
VP8LBitReader* const br = &dec->br_;
VP8LMetadata* const hdr = &dec->hdr_;
int pos = dec->last_pixel_; // current position
const int end = width * height; // End of data
const int last = width * last_row; // Last pixel to decode
const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
const int mask = hdr->huffman_mask_;
const HTreeGroup* htree_group =
(pos < last) ? GetHtreeGroupForPos(hdr, col, row) : NULL;
assert(pos <= end);
assert(last_row <= height);
assert(Is8bOptimizable(hdr));
while (!br->eos_ && pos < last) {
int code;
// Only update when changing tile.
if ((col & mask) == 0) {
htree_group = GetHtreeGroupForPos(hdr, col, row);
}
assert(htree_group != NULL);
VP8LFillBitWindow(br);
code = ReadSymbol(htree_group->htrees[GREEN], br);
if (code < NUM_LITERAL_CODES) { // Literal
data[pos] = code;
++pos;
++col;
if (col >= width) {
col = 0;
++row;
if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
ExtractPalettedAlphaRows(dec, row);
}
}
} else if (code < len_code_limit) { // Backward reference
int dist_code, dist;
const int length_sym = code - NUM_LITERAL_CODES;
const int length = GetCopyLength(length_sym, br);
const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
VP8LFillBitWindow(br);
dist_code = GetCopyDistance(dist_symbol, br);