/* mmx.h MultiMedia eXtensions GCC interface library for IA32. To use this library, simply include this header file and compile with GCC. You MUST have inlining enabled in order for mmx_ok() to work; this can be done by simply using -O on the GCC command line. Compiling with -DMMX_TRACE will cause detailed trace output to be sent to stderr for each mmx operation. This adds lots of code, and obviously slows execution to a crawl, but can be very useful for debugging. THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE. 1997-99 by H. Dietz and R. Fisher Notes: It appears that the latest gas has the pand problem fixed, therefore I'll undefine BROKEN_PAND by default. */ #ifndef _MMX_H #define _MMX_H /* Warning: at this writing, the version of GAS packaged with most Linux distributions does not handle the parallel AND operation mnemonic correctly. If the symbol BROKEN_PAND is defined, a slower alternative coding will be used. If execution of mmxtest results in an illegal instruction fault, define this symbol. */ #undef BROKEN_PAND /* The type of an value that fits in an MMX register (note that long long constant values MUST be suffixed by LL and unsigned long long values by ULL, lest they be truncated by the compiler) */ typedef union { long long q; /* Quadword (64-bit) value */ unsigned long long uq; /* Unsigned Quadword */ int d[2]; /* 2 Doubleword (32-bit) values */ unsigned int ud[2]; /* 2 Unsigned Doubleword */ short w[4]; /* 4 Word (16-bit) values */ unsigned short uw[4]; /* 4 Unsigned Word */ char b[8]; /* 8 Byte (8-bit) values */ unsigned char ub[8]; /* 8 Unsigned Byte */ float s[2]; /* Single-precision (32-bit) value */ } __attribute__ ((aligned(8))) mmx_t; /* On an 8-byte (64-bit) boundary */ #if 0 /* Function to test if multimedia instructions are supported... */ inline extern int mm_support(void) { /* Returns 1 if MMX instructions are supported, 3 if Cyrix MMX and Extended MMX instructions are supported 5 if AMD MMX and 3DNow! instructions are supported 0 if hardware does not support any of these */ register int rval = 0; __asm__ __volatile__( /* See if CPUID instruction is supported ... */ /* ... Get copies of EFLAGS into eax and ecx */ "pushf\n\t" "popl %%eax\n\t" "movl %%eax, %%ecx\n\t" /* ... Toggle the ID bit in one copy and store */ /* to the EFLAGS reg */ "xorl $0x200000, %%eax\n\t" "push %%eax\n\t" "popf\n\t" /* ... Get the (hopefully modified) EFLAGS */ "pushf\n\t" "popl %%eax\n\t" /* ... Compare and test result */ "xorl %%eax, %%ecx\n\t" "testl $0x200000, %%ecx\n\t" "jz NotSupported1\n\t" /* CPUID not supported */ /* Get standard CPUID information, and go to a specific vendor section */ "movl $0, %%eax\n\t" "cpuid\n\t" /* Check for Intel */ "cmpl $0x756e6547, %%ebx\n\t" "jne TryAMD\n\t" "cmpl $0x49656e69, %%edx\n\t" "jne TryAMD\n\t" "cmpl $0x6c65746e, %%ecx\n" "jne TryAMD\n\t" "jmp Intel\n\t" /* Check for AMD */ "\nTryAMD:\n\t" "cmpl $0x68747541, %%ebx\n\t" "jne TryCyrix\n\t" "cmpl $0x69746e65, %%edx\n\t" "jne TryCyrix\n\t" "cmpl $0x444d4163, %%ecx\n" "jne TryCyrix\n\t" "jmp AMD\n\t" /* Check for Cyrix */ "\nTryCyrix:\n\t" "cmpl $0x69727943, %%ebx\n\t" "jne NotSupported2\n\t" "cmpl $0x736e4978, %%edx\n\t" "jne NotSupported3\n\t" "cmpl $0x64616574, %%ecx\n\t" "jne NotSupported4\n\t" /* Drop through to Cyrix... */ /* Cyrix Section */ /* See if extended CPUID level 80000001 is supported */ /* The value of CPUID/80000001 for the 6x86MX is undefined according to the Cyrix CPU Detection Guide (Preliminary Rev. 1.01 table 1), so we'll check the value of eax for CPUID/0 to see if standard CPUID level 2 is supported. According to the table, the only CPU which supports level 2 is also the only one which supports extended CPUID levels. */ "cmpl $0x2, %%eax\n\t" "jne MMXtest\n\t" /* Use standard CPUID instead */ /* Extended CPUID supported (in theory), so get extended features */ "movl $0x80000001, %%eax\n\t" "cpuid\n\t" "testl $0x00800000, %%eax\n\t" /* Test for MMX */ "jz NotSupported5\n\t" /* MMX not supported */ "testl $0x01000000, %%eax\n\t" /* Test for Ext'd MMX */ "jnz EMMXSupported\n\t" "movl $1, %0:\n\n\t" /* MMX Supported */ "jmp Return\n\n" "EMMXSupported:\n\t" "movl $3, %0:\n\n\t" /* EMMX and MMX Supported */ "jmp Return\n\t" /* AMD Section */ "AMD:\n\t" /* See if extended CPUID is supported */ "movl $0x80000000, %%eax\n\t" "cpuid\n\t" "cmpl $0x80000000, %%eax\n\t" "jl MMXtest\n\t" /* Use standard CPUID instead */ /* Extended CPUID supported, so get extended features */ "movl $0x80000001, %%eax\n\t" "cpuid\n\t" "testl $0x00800000, %%edx\n\t" /* Test for MMX */ "jz NotSupported6\n\t" /* MMX not supported */ "testl $0x80000000, %%edx\n\t" /* Test for 3DNow! */ "jnz ThreeDNowSupported\n\t" "movl $1, %0:\n\n\t" /* MMX Supported */ "jmp Return\n\n" "ThreeDNowSupported:\n\t" "movl $5, %0:\n\n\t" /* 3DNow! and MMX Supported */ "jmp Return\n\t" /* Intel Section */ "Intel:\n\t" /* Check for MMX */ "MMXtest:\n\t" "movl $1, %%eax\n\t" "cpuid\n\t" "testl $0x00800000, %%edx\n\t" /* Test for MMX */ "jz NotSupported7\n\t" /* MMX Not supported */ "movl $1, %0:\n\n\t" /* MMX Supported */ "jmp Return\n\t" /* Nothing supported */ "\nNotSupported1:\n\t" "#movl $101, %0:\n\n\t" "\nNotSupported2:\n\t" "#movl $102, %0:\n\n\t" "\nNotSupported3:\n\t" "#movl $103, %0:\n\n\t" "\nNotSupported4:\n\t" "#movl $104, %0:\n\n\t" "\nNotSupported5:\n\t" "#movl $105, %0:\n\n\t" "\nNotSupported6:\n\t" "#movl $106, %0:\n\n\t" "\nNotSupported7:\n\t" "#movl $107, %0:\n\n\t" "movl $0, %0:\n\n\t" "Return:\n\t":"=a"(rval): /* no input */ :"eax", "ebx", "ecx", "edx"); /* Return */ return (rval); } /* Function to test if mmx instructions are supported... */ inline extern int mmx_ok(void) { /* Returns 1 if MMX instructions are supported, 0 otherwise */ return (mm_support() & 0x1); } #endif /* Helper functions for the instruction macros that follow... (note that memory-to-register, m2r, instructions are nearly as efficient as register-to-register, r2r, instructions; however, memory-to-memory instructions are really simulated as a convenience, and are only 1/3 as efficient) */ #ifdef MMX_TRACE /* Include the stuff for printing a trace to stderr... */ #define mmx_i2r(op, imm, reg) \ { \ mmx_t mmx_trace; \ mmx_trace.uq = (imm); \ printf(#op "_i2r(" #imm "=0x%08x%08x, ", \ mmx_trace.d[1], mmx_trace.d[0]); \ __asm__ __volatile__ ("movq %%" #reg ", %0" \ : "=X" (mmx_trace) \ : /* nothing */ ); \ printf(#reg "=0x%08x%08x) => ", \ mmx_trace.d[1], mmx_trace.d[0]); \ __asm__ __volatile__ (#op " %0, %%" #reg \ : /* nothing */ \ : "X" (imm)); \ __asm__ __volatile__ ("movq %%" #reg ", %0" \ : "=X" (mmx_trace) \ : /* nothing */ ); \ printf(#reg "=0x%08x%08x\n", \ mmx_trace.d[1], mmx_trace.d[0]); \ } #define mmx_m2r(op, mem, reg) \ { \ mmx_t mmx_trace; \ mmx_trace = (mem); \ printf(#op "_m2r(" #mem "=0x%08x%08x, ", \ mmx_trace.d[1], mmx_trace.d[0]); \ __asm__ __volatile__ ("movq %%" #reg ", %0" \ : "=X" (mmx_trace) \ : /* nothing */ ); \ printf(#reg "=0x%08x%08x) => ", \ mmx_trace.d[1], mmx_trace.d[0]); \ __asm__ __volatile__ (#op " %0, %%" #reg \ : /* nothing */ \ : "X" (mem)); \ __asm__ __volatile__ ("movq %%" #reg ", %0" \ : "=X" (mmx_trace) \ : /* nothing */ ); \ printf(#reg "=0x%08x%08x\n", \ mmx_trace.d[1], mmx_trace.d[0]); \ } #define mmx_r2m(op, reg, mem) \ { \ mmx_t mmx_trace; \ __asm__ __volatile__ ("movq %%" #reg ", %0" \ : "=X" (mmx_trace) \ : /* nothing */ ); \ printf(#op "_r2m(" #reg "=0x%08x%08x, ", \ mmx_trace.d[1], mmx_trace.d[0]); \ mmx_trace = (mem); \ printf(#mem "=0x%08x%08x) => ", \ mmx_trace.d[1], mmx_trace.d[0]); \ __asm__ __volatile__ (#op " %%" #reg ", %0" \ : "=X" (mem) \ : /* nothing */ ); \ mmx_trace = (mem); \ printf(#mem "=0x%08x%08x\n", \ mmx_trace.d[1], mmx_trace.d[0]); \ } #define mmx_r2r(op, regs, regd) \ { \ mmx_t mmx_trace; \ __asm__ __volatile__ ("movq %%" #regs ", %0" \ : "=X" (mmx_trace) \ : /* nothing */ ); \ printf(#op "_r2r(" #regs "=0x%08x%08x, ", \ mmx_trace.d[1], mmx_trace.d[0]); \ __asm__ __volatile__ ("movq %%" #regd ", %0" \ : "=X" (mmx_trace) \ : /* nothing */ ); \ printf(#regd "=0x%08x%08x) => ", \ mmx_trace.d[1], mmx_trace.d[0]); \ __asm__ __volatile__ (#op " %" #regs ", %" #regd); \ __asm__ __volatile__ ("movq %%" #regd ", %0" \ : "=X" (mmx_trace) \ : /* nothing */ ); \ printf(#regd "=0x%08x%08x\n", \ mmx_trace.d[1], mmx_trace.d[0]); \ } #define mmx_m2m(op, mems, memd) \ { \ mmx_t mmx_trace; \ mmx_trace = (mems); \ printf(#op "_m2m(" #mems "=0x%08x%08x, ", \ mmx_trace.d[1], mmx_trace.d[0]); \ mmx_trace = (memd); \ printf(#memd "=0x%08x%08x) => ", \ mmx_trace.d[1], mmx_trace.d[0]); \ __asm__ __volatile__ ("movq %0, %%mm0\n\t" \ #op " %1, %%mm0\n\t" \ "movq %%mm0, %0" \ : "=X" (memd) \ : "X" (mems)); \ mmx_trace = (memd); \ printf(#memd "=0x%08x%08x\n", \ mmx_trace.d[1], mmx_trace.d[0]); \ } #else /* These macros are a lot simpler without the tracing... */ #define mmx_i2r(op, imm, reg) \ __asm__ __volatile__ (#op " %0, %%" #reg \ : /* nothing */ \ : "X" (imm) ) #define mmx_m2r(op, mem, reg) \ __asm__ __volatile__ (#op " %0, %%" #reg \ : /* nothing */ \ : "m" (mem)) #define mmx_r2m(op, reg, mem) \ __asm__ __volatile__ (#op " %%" #reg ", %0" \ : "=m" (mem) \ : /* nothing */ ) #define mmx_r2r(op, regs, regd) \ __asm__ __volatile__ (#op " %" #regs ", %" #regd) #define mmx_m2m(op, mems, memd) \ __asm__ __volatile__ ("movq %0, %%mm0\n\t" \ #op " %1, %%mm0\n\t" \ "movq %%mm0, %0" \ : "=X" (memd) \ : "X" (mems)) #endif /* 1x64 MOVe Quadword (this is both a load and a store... in fact, it is the only way to store) */ #define movq_m2r(var, reg) mmx_m2r(movq, var, reg) #define movq_r2m(reg, var) mmx_r2m(movq, reg, var) #define movq_r2r(regs, regd) mmx_r2r(movq, regs, regd) #define movq(vars, vard) \ __asm__ __volatile__ ("movq %1, %%mm0\n\t" \ "movq %%mm0, %0" \ : "=X" (vard) \ : "X" (vars)) /* 1x32 MOVe Doubleword (like movq, this is both load and store... but is most useful for moving things between mmx registers and ordinary registers) */ #define movd_m2r(var, reg) mmx_m2r(movd, var, reg) #define movd_r2m(reg, var) mmx_r2m(movd, reg, var) #define movd_r2r(regs, regd) mmx_r2r(movd, regs, regd) #define movd(vars, vard) \ __asm__ __volatile__ ("movd %1, %%mm0\n\t" \ "movd %%mm0, %0" \ : "=X" (vard) \ : "X" (vars)) /* 2x32, 4x16, and 8x8 Parallel ADDs */ #define paddd_m2r(var, reg) mmx_m2r(paddd, var, reg) #define paddd_r2r(regs, regd) mmx_r2r(paddd, regs, regd) #define paddd(vars, vard) mmx_m2m(paddd, vars, vard) #define paddw_m2r(var, reg) mmx_m2r(paddw, var, reg) #define paddw_r2r(regs, regd) mmx_r2r(paddw, regs, regd) #define paddw(vars, vard) mmx_m2m(paddw, vars, vard) #define paddb_m2r(var, reg) mmx_m2r(paddb, var, reg) #define paddb_r2r(regs, regd) mmx_r2r(paddb, regs, regd) #define paddb(vars, vard) mmx_m2m(paddb, vars, vard) /* 4x16 and 8x8 Parallel ADDs using Saturation arithmetic */ #define paddsw_m2r(var, reg) mmx_m2r(paddsw, var, reg) #define paddsw_r2r(regs, regd) mmx_r2r(paddsw, regs, regd) #define paddsw(vars, vard) mmx_m2m(paddsw, vars, vard) #define paddsb_m2r(var, reg) mmx_m2r(paddsb, var, reg) #define paddsb_r2r(regs, regd) mmx_r2r(paddsb, regs, regd) #define paddsb(vars, vard) mmx_m2m(paddsb, vars, vard) /* 4x16 and 8x8 Parallel ADDs using Unsigned Saturation arithmetic */ #define paddusw_m2r(var, reg) mmx_m2r(paddusw, var, reg) #define paddusw_r2r(regs, regd) mmx_r2r(paddusw, regs, regd) #define paddusw(vars, vard) mmx_m2m(paddusw, vars, vard) #define paddusb_m2r(var, reg) mmx_m2r(paddusb, var, reg) #define paddusb_r2r(regs, regd) mmx_r2r(paddusb, regs, regd) #define paddusb(vars, vard) mmx_m2m(paddusb, vars, vard) /* 2x32, 4x16, and 8x8 Parallel SUBs */ #define psubd_m2r(var, reg) mmx_m2r(psubd, var, reg) #define psubd_r2r(regs, regd) mmx_r2r(psubd, regs, regd) #define psubd(vars, vard) mmx_m2m(psubd, vars, vard) #define psubw_m2r(var, reg) mmx_m2r(psubw, var, reg) #define psubw_r2r(regs, regd) mmx_r2r(psubw, regs, regd) #define psubw(vars, vard) mmx_m2m(psubw, vars, vard) #define psubb_m2r(var, reg) mmx_m2r(psubb, var, reg) #define psubb_r2r(regs, regd) mmx_r2r(psubb, regs, regd) #define psubb(vars, vard) mmx_m2m(psubb, vars, vard) /* 4x16 and 8x8 Parallel SUBs using Saturation arithmetic */ #define psubsw_m2r(var, reg) mmx_m2r(psubsw, var, reg) #define psubsw_r2r(regs, regd) mmx_r2r(psubsw, regs, regd) #define psubsw(vars, vard) mmx_m2m(psubsw, vars, vard) #define psubsb_m2r(var, reg) mmx_m2r(psubsb, var, reg) #define psubsb_r2r(regs, regd) mmx_r2r(psubsb, regs, regd) #define psubsb(vars, vard) mmx_m2m(psubsb, vars, vard) /* 4x16 and 8x8 Parallel SUBs using Unsigned Saturation arithmetic */ #define psubusw_m2r(var, reg) mmx_m2r(psubusw, var, reg) #define psubusw_r2r(regs, regd) mmx_r2r(psubusw, regs, regd) #define psubusw(vars, vard) mmx_m2m(psubusw, vars, vard) #define psubusb_m2r(var, reg) mmx_m2r(psubusb, var, reg) #define psubusb_r2r(regs, regd) mmx_r2r(psubusb, regs, regd) #define psubusb(vars, vard) mmx_m2m(psubusb, vars, vard) /* 4x16 Parallel MULs giving Low 4x16 portions of results */ #define pmullw_m2r(var, reg) mmx_m2r(pmullw, var, reg) #define pmullw_r2r(regs, regd) mmx_r2r(pmullw, regs, regd) #define pmullw(vars, vard) mmx_m2m(pmullw, vars, vard) /* 4x16 Parallel MULs giving High 4x16 portions of results */ #define pmulhw_m2r(var, reg) mmx_m2r(pmulhw, var, reg) #define pmulhw_r2r(regs, regd) mmx_r2r(pmulhw, regs, regd) #define pmulhw(vars, vard) mmx_m2m(pmulhw, vars, vard) /* 4x16->2x32 Parallel Mul-ADD (muls like pmullw, then adds adjacent 16-bit fields in the multiply result to make the final 2x32 result) */ #define pmaddwd_m2r(var, reg) mmx_m2r(pmaddwd, var, reg) #define pmaddwd_r2r(regs, regd) mmx_r2r(pmaddwd, regs, regd) #define pmaddwd(vars, vard) mmx_m2m(pmaddwd, vars, vard) /* 1x64 bitwise AND */ #ifdef BROKEN_PAND #define pand_m2r(var, reg) \ { \ mmx_m2r(pandn, (mmx_t) -1LL, reg); \ mmx_m2r(pandn, var, reg); \ } #define pand_r2r(regs, regd) \ { \ mmx_m2r(pandn, (mmx_t) -1LL, regd); \ mmx_r2r(pandn, regs, regd) \ } #define pand(vars, vard) \ { \ movq_m2r(vard, mm0); \ mmx_m2r(pandn, (mmx_t) -1LL, mm0); \ mmx_m2r(pandn, vars, mm0); \ movq_r2m(mm0, vard); \ } #else #define pand_m2r(var, reg) mmx_m2r(pand, var, reg) #define pand_r2r(regs, regd) mmx_r2r(pand, regs, regd) #define pand(vars, vard) mmx_m2m(pand, vars, vard) #endif /* 1x64 bitwise AND with Not the destination */ #define pandn_m2r(var, reg) mmx_m2r(pandn, var, reg) #define pandn_r2r(regs, regd) mmx_r2r(pandn, regs, regd) #define pandn(vars, vard) mmx_m2m(pandn, vars, vard) /* 1x64 bitwise OR */ #define por_m2r(var, reg) mmx_m2r(por, var, reg) #define por_r2r(regs, regd) mmx_r2r(por, regs, regd) #define por(vars, vard) mmx_m2m(por, vars, vard) /* 1x64 bitwise eXclusive OR */ #define pxor_m2r(var, reg) mmx_m2r(pxor, var, reg) #define pxor_r2r(regs, regd) mmx_r2r(pxor, regs, regd) #define pxor(vars, vard) mmx_m2m(pxor, vars, vard) /* 2x32, 4x16, and 8x8 Parallel CoMPare for EQuality (resulting fields are either 0 or -1) */ #define pcmpeqd_m2r(var, reg) mmx_m2r(pcmpeqd, var, reg) #define pcmpeqd_r2r(regs, regd) mmx_r2r(pcmpeqd, regs, regd) #define pcmpeqd(vars, vard) mmx_m2m(pcmpeqd, vars, vard) #define pcmpeqw_m2r(var, reg) mmx_m2r(pcmpeqw, var, reg) #define pcmpeqw_r2r(regs, regd) mmx_r2r(pcmpeqw, regs, regd) #define pcmpeqw(vars, vard) mmx_m2m(pcmpeqw, vars, vard) #define pcmpeqb_m2r(var, reg) mmx_m2r(pcmpeqb, var, reg) #define pcmpeqb_r2r(regs, regd) mmx_r2r(pcmpeqb, regs, regd) #define pcmpeqb(vars, vard) mmx_m2m(pcmpeqb, vars, vard) /* 2x32, 4x16, and 8x8 Parallel CoMPare for Greater Than (resulting fields are either 0 or -1) */ #define pcmpgtd_m2r(var, reg) mmx_m2r(pcmpgtd, var, reg) #define pcmpgtd_r2r(regs, regd) mmx_r2r(pcmpgtd, regs, regd) #define pcmpgtd(vars, vard) mmx_m2m(pcmpgtd, vars, vard) #define pcmpgtw_m2r(var, reg) mmx_m2r(pcmpgtw, var, reg) #define pcmpgtw_r2r(regs, regd) mmx_r2r(pcmpgtw, regs, regd) #define pcmpgtw(vars, vard) mmx_m2m(pcmpgtw, vars, vard) #define pcmpgtb_m2r(var, reg) mmx_m2r(pcmpgtb, var, reg) #define pcmpgtb_r2r(regs, regd) mmx_r2r(pcmpgtb, regs, regd) #define pcmpgtb(vars, vard) mmx_m2m(pcmpgtb, vars, vard) /* 1x64, 2x32, and 4x16 Parallel Shift Left Logical */ #define psllq_i2r(imm, reg) mmx_i2r(psllq, imm, reg) #define psllq_m2r(var, reg) mmx_m2r(psllq, var, reg) #define psllq_r2r(regs, regd) mmx_r2r(psllq, regs, regd) #define psllq(vars, vard) mmx_m2m(psllq, vars, vard) #define pslld_i2r(imm, reg) mmx_i2r(pslld, imm, reg) #define pslld_m2r(var, reg) mmx_m2r(pslld, var, reg) #define pslld_r2r(regs, regd) mmx_r2r(pslld, regs, regd) #define pslld(vars, vard) mmx_m2m(pslld, vars, vard) #define psllw_i2r(imm, reg) mmx_i2r(psllw, imm, reg) #define psllw_m2r(var, reg) mmx_m2r(psllw, var, reg) #define psllw_r2r(regs, regd) mmx_r2r(psllw, regs, regd) #define psllw(vars, vard) mmx_m2m(psllw, vars, vard) /* 1x64, 2x32, and 4x16 Parallel Shift Right Logical */ #define psrlq_i2r(imm, reg) mmx_i2r(psrlq, imm, reg) #define psrlq_m2r(var, reg) mmx_m2r(psrlq, var, reg) #define psrlq_r2r(regs, regd) mmx_r2r(psrlq, regs, regd) #define psrlq(vars, vard) mmx_m2m(psrlq, vars, vard) #define psrld_i2r(imm, reg) mmx_i2r(psrld, imm, reg) #define psrld_m2r(var, reg) mmx_m2r(psrld, var, reg) #define psrld_r2r(regs, regd) mmx_r2r(psrld, regs, regd) #define psrld(vars, vard) mmx_m2m(psrld, vars, vard) #define psrlw_i2r(imm, reg) mmx_i2r(psrlw, imm, reg) #define psrlw_m2r(var, reg) mmx_m2r(psrlw, var, reg) #define psrlw_r2r(regs, regd) mmx_r2r(psrlw, regs, regd) #define psrlw(vars, vard) mmx_m2m(psrlw, vars, vard) /* 2x32 and 4x16 Parallel Shift Right Arithmetic */ #define psrad_i2r(imm, reg) mmx_i2r(psrad, imm, reg) #define psrad_m2r(var, reg) mmx_m2r(psrad, var, reg) #define psrad_r2r(regs, regd) mmx_r2r(psrad, regs, regd) #define psrad(vars, vard) mmx_m2m(psrad, vars, vard) #define psraw_i2r(imm, reg) mmx_i2r(psraw, imm, reg) #define psraw_m2r(var, reg) mmx_m2r(psraw, var, reg) #define psraw_r2r(regs, regd) mmx_r2r(psraw, regs, regd) #define psraw(vars, vard) mmx_m2m(psraw, vars, vard) /* 2x32->4x16 and 4x16->8x8 PACK and Signed Saturate (packs source and dest fields into dest in that order) */ #define packssdw_m2r(var, reg) mmx_m2r(packssdw, var, reg) #define packssdw_r2r(regs, regd) mmx_r2r(packssdw, regs, regd) #define packssdw(vars, vard) mmx_m2m(packssdw, vars, vard) #define packsswb_m2r(var, reg) mmx_m2r(packsswb, var, reg) #define packsswb_r2r(regs, regd) mmx_r2r(packsswb, regs, regd) #define packsswb(vars, vard) mmx_m2m(packsswb, vars, vard) /* 4x16->8x8 PACK and Unsigned Saturate (packs source and dest fields into dest in that order) */ #define packuswb_m2r(var, reg) mmx_m2r(packuswb, var, reg) #define packuswb_r2r(regs, regd) mmx_r2r(packuswb, regs, regd) #define packuswb(vars, vard) mmx_m2m(packuswb, vars, vard) /* 2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK Low (interleaves low half of dest with low half of source as padding in each result field) */ #define punpckldq_m2r(var, reg) mmx_m2r(punpckldq, var, reg) #define punpckldq_r2r(regs, regd) mmx_r2r(punpckldq, regs, regd) #define punpckldq(vars, vard) mmx_m2m(punpckldq, vars, vard) #define punpcklwd_m2r(var, reg) mmx_m2r(punpcklwd, var, reg) #define punpcklwd_r2r(regs, regd) mmx_r2r(punpcklwd, regs, regd) #define punpcklwd(vars, vard) mmx_m2m(punpcklwd, vars, vard) #define punpcklbw_m2r(var, reg) mmx_m2r(punpcklbw, var, reg) #define punpcklbw_r2r(regs, regd) mmx_r2r(punpcklbw, regs, regd) #define punpcklbw(vars, vard) mmx_m2m(punpcklbw, vars, vard) /* 2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK High (interleaves high half of dest with high half of source as padding in each result field) */ #define punpckhdq_m2r(var, reg) mmx_m2r(punpckhdq, var, reg) #define punpckhdq_r2r(regs, regd) mmx_r2r(punpckhdq, regs, regd) #define punpckhdq(vars, vard) mmx_m2m(punpckhdq, vars, vard) #define punpckhwd_m2r(var, reg) mmx_m2r(punpckhwd, var, reg) #define punpckhwd_r2r(regs, regd) mmx_r2r(punpckhwd, regs, regd) #define punpckhwd(vars, vard) mmx_m2m(punpckhwd, vars, vard) #define punpckhbw_m2r(var, reg) mmx_m2r(punpckhbw, var, reg) #define punpckhbw_r2r(regs, regd) mmx_r2r(punpckhbw, regs, regd) #define punpckhbw(vars, vard) mmx_m2m(punpckhbw, vars, vard) /* Empty MMx State (used to clean-up when going from mmx to float use of the registers that are shared by both; note that there is no float-to-mmx operation needed, because only the float tag word info is corruptible) */ #ifdef MMX_TRACE #define emms() \ { \ printf("emms()\n"); \ __asm__ __volatile__ ("emms"); \ } #else #define emms() __asm__ __volatile__ ("emms") #endif #endif /* vi: set ts=4 sw=4 expandtab: */