src/libm/e_log.c
 author Sam Lantinga Wed, 27 May 2020 10:35:43 -0700 changeset 13866 edd91a51feb6 parent 11711 8a982ed61896 permissions -rw-r--r--
Don't include the iOS joystick driver if joysticks are disabled
```     1 /*
```
```     2  * ====================================================
```
```     3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
```
```     4  *
```
```     5  * Developed at SunPro, a Sun Microsystems, Inc. business.
```
```     6  * Permission to use, copy, modify, and distribute this
```
```     7  * software is freely granted, provided that this notice
```
```     8  * is preserved.
```
```     9  * ====================================================
```
```    10  */
```
```    11
```
```    12 #if defined(_MSC_VER)           /* Handle Microsoft VC++ compiler specifics. */
```
```    13 /* C4723: potential divide by zero. */
```
```    14 #pragma warning ( disable : 4723 )
```
```    15 #endif
```
```    16
```
```    17 /* __ieee754_log(x)
```
```    18  * Return the logrithm of x
```
```    19  *
```
```    20  * Method :
```
```    21  *   1. Argument Reduction: find k and f such that
```
```    22  *			x = 2^k * (1+f),
```
```    23  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
```
```    24  *
```
```    25  *   2. Approximation of log(1+f).
```
```    26  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
```
```    27  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
```
```    28  *	     	 = 2s + s*R
```
```    29  *      We use a special Reme algorithm on [0,0.1716] to generate
```
```    30  * 	a polynomial of degree 14 to approximate R The maximum error
```
```    31  *	of this polynomial approximation is bounded by 2**-58.45. In
```
```    32  *	other words,
```
```    33  *		        2      4      6      8      10      12      14
```
```    34  *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
```
```    35  *  	(the values of Lg1 to Lg7 are listed in the program)
```
```    36  *	and
```
```    37  *	    |      2          14          |     -58.45
```
```    38  *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
```
```    39  *	    |                             |
```
```    40  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
```
```    41  *	In order to guarantee error in log below 1ulp, we compute log
```
```    42  *	by
```
```    43  *		log(1+f) = f - s*(f - R)	(if f is not too large)
```
```    44  *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
```
```    45  *
```
```    46  *	3. Finally,  log(x) = k*ln2 + log(1+f).
```
```    47  *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
```
```    48  *	   Here ln2 is split into two floating point number:
```
```    49  *			ln2_hi + ln2_lo,
```
```    50  *	   where n*ln2_hi is always exact for |n| < 2000.
```
```    51  *
```
```    52  * Special cases:
```
```    53  *	log(x) is NaN with signal if x < 0 (including -INF) ;
```
```    54  *	log(+INF) is +INF; log(0) is -INF with signal;
```
```    55  *	log(NaN) is that NaN with no signal.
```
```    56  *
```
```    57  * Accuracy:
```
```    58  *	according to an error analysis, the error is always less than
```
```    59  *	1 ulp (unit in the last place).
```
```    60  *
```
```    61  * Constants:
```
```    62  * The hexadecimal values are the intended ones for the following
```
```    63  * constants. The decimal values may be used, provided that the
```
```    64  * compiler will convert from decimal to binary accurately enough
```
```    65  * to produce the hexadecimal values shown.
```
```    66  */
```
```    67
```
```    68 #include "math_libm.h"
```
```    69 #include "math_private.h"
```
```    70
```
```    71 static const double
```
```    72 ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
```
```    73 ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
```
```    74 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
```
```    75 Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
```
```    76 Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
```
```    77 Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
```
```    78 Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
```
```    79 Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
```
```    80 Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
```
```    81 Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
```
```    82
```
```    83 static const double zero   =  0.0;
```
```    84
```
```    85 double attribute_hidden __ieee754_log(double x)
```
```    86 {
```
```    87 	double hfsq,f,s,z,R,w,t1,t2,dk;
```
```    88 	int32_t k,hx,i,j;
```
```    89 	u_int32_t lx;
```
```    90
```
```    91 	EXTRACT_WORDS(hx,lx,x);
```
```    92
```
```    93 	k=0;
```
```    94 	if (hx < 0x00100000) {			/* x < 2**-1022  */
```
```    95 	    if (((hx&0x7fffffff)|lx)==0)
```
```    96 		return -two54/zero;		/* log(+-0)=-inf */
```
```    97 	    if (hx<0) return (x-x)/zero;	/* log(-#) = NaN */
```
```    98 	    k -= 54; x *= two54; /* subnormal number, scale up x */
```
```    99 	    GET_HIGH_WORD(hx,x);
```
```   100 	}
```
```   101 	if (hx >= 0x7ff00000) return x+x;
```
```   102 	k += (hx>>20)-1023;
```
```   103 	hx &= 0x000fffff;
```
```   104 	i = (hx+0x95f64)&0x100000;
```
```   105 	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */
```
```   106 	k += (i>>20);
```
```   107 	f = x-1.0;
```
```   108 	if((0x000fffff&(2+hx))<3) {	/* |f| < 2**-20 */
```
```   109 	    if(f==zero) {if(k==0) return zero;  else {dk=(double)k;
```
```   110 				 return dk*ln2_hi+dk*ln2_lo;}
```
```   111 	    }
```
```   112 	    R = f*f*(0.5-0.33333333333333333*f);
```
```   113 	    if(k==0) return f-R; else {dk=(double)k;
```
```   114 	    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
```
```   115 	}
```
```   116  	s = f/(2.0+f);
```
```   117 	dk = (double)k;
```
```   118 	z = s*s;
```
```   119 	i = hx-0x6147a;
```
```   120 	w = z*z;
```
```   121 	j = 0x6b851-hx;
```
```   122 	t1= w*(Lg2+w*(Lg4+w*Lg6));
```
```   123 	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
```
```   124 	i |= j;
```
```   125 	R = t2+t1;
```
```   126 	if(i>0) {
```
```   127 	    hfsq=0.5*f*f;
```
```   128 	    if(k==0) return f-(hfsq-s*(hfsq+R)); else
```
```   129 		     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
```
```   130 	} else {
```
```   131 	    if(k==0) return f-s*(f-R); else
```
```   132 		     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
```
```   133 	}
```
```   134 }
```
```   135
```
```   136 /*
```
```   137  * wrapper log(x)
```
```   138  */
```
```   139 #ifndef _IEEE_LIBM
```
```   140 double log(double x)
```
```   141 {
```
```   142 	double z = __ieee754_log(x);
```
```   143 	if (_LIB_VERSION == _IEEE_ || isnan(x) || x > 0.0)
```
```   144 		return z;
```
```   145 	if (x == 0.0)
```
```   146 		return __kernel_standard(x, x, 16); /* log(0) */
```
```   147 	return __kernel_standard(x, x, 17); /* log(x<0) */
```
```   148 }
```
```   149 #else
```
```   150 strong_alias(__ieee754_log, log)
```
```   151 #endif
```
```   152 libm_hidden_def(log)
```