2 SDL - Simple DirectMedia Layer
3 Copyright (C) 1997-2006 Sam Lantinga
5 This library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
10 This library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
15 You should have received a copy of the GNU Lesser General Public
16 License along with this library; if not, write to the Free Software
17 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 #include "SDL_config.h"
25 * RLE encoding for software colorkey and alpha-channel acceleration
27 * Original version by Sam Lantinga
29 * Mattias Engdegård (Yorick): Rewrite. New encoding format, encoder and
30 * decoder. Added per-surface alpha blitter. Added per-pixel alpha
31 * format, encoder and blitter.
33 * Many thanks to Xark and johns for hints, benchmarks and useful comments
34 * leading to this code.
36 * Welcome to Macro Mayhem.
40 * The encoding translates the image data to a stream of segments of the form
44 * where <skip> is the number of transparent pixels to skip,
45 * <run> is the number of opaque pixels to blit,
46 * and <data> are the pixels themselves.
48 * This basic structure is used both for colorkeyed surfaces, used for simple
49 * binary transparency and for per-surface alpha blending, and for surfaces
50 * with per-pixel alpha. The details differ, however:
52 * Encoding of colorkeyed surfaces:
54 * Encoded pixels always have the same format as the target surface.
55 * <skip> and <run> are unsigned 8 bit integers, except for 32 bit depth
56 * where they are 16 bit. This makes the pixel data aligned at all times.
57 * Segments never wrap around from one scan line to the next.
59 * The end of the sequence is marked by a zero <skip>,<run> pair at the *
60 * beginning of a line.
62 * Encoding of surfaces with per-pixel alpha:
64 * The sequence begins with a struct RLEDestFormat describing the target
65 * pixel format, to provide reliable un-encoding.
67 * Each scan line is encoded twice: First all completely opaque pixels,
68 * encoded in the target format as described above, and then all
69 * partially transparent (translucent) pixels (where 1 <= alpha <= 254),
70 * in the following 32-bit format:
72 * For 32-bit targets, each pixel has the target RGB format but with
73 * the alpha value occupying the highest 8 bits. The <skip> and <run>
76 * For 16-bit targets, each pixel has the target RGB format, but with
77 * the middle component (usually green) shifted 16 steps to the left,
78 * and the hole filled with the 5 most significant bits of the alpha value.
79 * i.e. if the target has the format rrrrrggggggbbbbb,
80 * the encoded pixel will be 00000gggggg00000rrrrr0aaaaabbbbb.
81 * The <skip> and <run> counts are 8 bit for the opaque lines, 16 bit
82 * for the translucent lines. Two padding bytes may be inserted
83 * before each translucent line to keep them 32-bit aligned.
85 * The end of the sequence is marked by a zero <skip>,<run> pair at the
86 * beginning of an opaque line.
89 #include "SDL_video.h"
90 #include "SDL_sysvideo.h"
92 #include "SDL_RLEaccel_c.h"
94 #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && SDL_ASSEMBLY_ROUTINES
100 #include "SDL_cpuinfo.h"
104 #define MAX(a, b) ((a) > (b) ? (a) : (b))
107 #define MIN(a, b) ((a) < (b) ? (a) : (b))
110 #define PIXEL_COPY(to, from, len, bpp) \
113 SDL_memcpy4(to, from, (size_t)(len)); \
115 SDL_memcpy(to, from, (size_t)(len) * (bpp)); \
120 * Various colorkey blit methods, for opaque and per-surface alpha
123 #define OPAQUE_BLIT(to, from, length, bpp, alpha) \
124 PIXEL_COPY(to, from, length, bpp)
128 #define ALPHA_BLIT32_888MMX(to, from, length, bpp, alpha) \
130 Uint32 *srcp = (Uint32 *)(from); \
131 Uint32 *dstp = (Uint32 *)(to); \
132 int i = 0x00FF00FF; \
133 movd_m2r(*(&i), mm3); \
134 punpckldq_r2r(mm3, mm3); \
136 movd_m2r(*(&i), mm7); \
137 punpckldq_r2r(mm7, mm7); \
138 i = alpha | alpha << 16; \
139 movd_m2r(*(&i), mm4); \
140 punpckldq_r2r(mm4, mm4); \
141 pcmpeqd_r2r(mm5,mm5); /* set mm5 to "1" */ \
142 pxor_r2r(mm7, mm5); /* make clear alpha mask */ \
145 movd_m2r((*srcp), mm1); /* src -> mm1 */ \
146 punpcklbw_r2r(mm1, mm1); \
147 pand_r2r(mm3, mm1); \
148 movd_m2r((*dstp), mm2); /* dst -> mm2 */ \
149 punpcklbw_r2r(mm2, mm2); \
150 pand_r2r(mm3, mm2); \
151 psubw_r2r(mm2, mm1); \
152 pmullw_r2r(mm4, mm1); \
154 paddw_r2r(mm1, mm2); \
155 pand_r2r(mm3, mm2); \
156 packuswb_r2r(mm2, mm2); \
157 pand_r2r(mm5, mm2); /* 00000RGB -> mm2 */ \
158 movd_r2m(mm2, *dstp); \
163 for(; i > 0; --i) { \
164 movq_m2r((*srcp), mm0); \
165 movq_r2r(mm0, mm1); \
166 punpcklbw_r2r(mm0, mm0); \
167 movq_m2r((*dstp), mm2); \
168 punpckhbw_r2r(mm1, mm1); \
169 movq_r2r(mm2, mm6); \
170 pand_r2r(mm3, mm0); \
171 punpcklbw_r2r(mm2, mm2); \
172 pand_r2r(mm3, mm1); \
173 punpckhbw_r2r(mm6, mm6); \
174 pand_r2r(mm3, mm2); \
175 psubw_r2r(mm2, mm0); \
176 pmullw_r2r(mm4, mm0); \
177 pand_r2r(mm3, mm6); \
178 psubw_r2r(mm6, mm1); \
179 pmullw_r2r(mm4, mm1); \
181 paddw_r2r(mm0, mm2); \
183 paddw_r2r(mm1, mm6); \
184 pand_r2r(mm3, mm2); \
185 pand_r2r(mm3, mm6); \
186 packuswb_r2r(mm2, mm2); \
187 packuswb_r2r(mm6, mm6); \
188 psrlq_i2r(32, mm2); \
189 psllq_i2r(32, mm6); \
191 pand_r2r(mm5, mm2); /* 00000RGB -> mm2 */ \
192 movq_r2m(mm2, *dstp); \
200 #define ALPHA_BLIT16_565MMX(to, from, length, bpp, alpha) \
203 Uint16 *srcp = (Uint16 *)(from); \
204 Uint16 *dstp = (Uint16 *)(to); \
205 Uint32 ALPHA = 0xF800; \
206 movd_m2r(*(&ALPHA), mm1); \
207 punpcklwd_r2r(mm1, mm1); \
208 punpcklwd_r2r(mm1, mm1); \
210 movd_m2r(*(&ALPHA), mm4); \
211 punpcklwd_r2r(mm4, mm4); \
212 punpcklwd_r2r(mm4, mm4); \
214 movd_m2r(*(&ALPHA), mm7); \
215 punpcklwd_r2r(mm7, mm7); \
216 punpcklwd_r2r(mm7, mm7); \
218 i = (Uint32)alpha | (Uint32)alpha << 16; \
219 movd_m2r(*(&i), mm0); \
220 punpckldq_r2r(mm0, mm0); \
221 ALPHA = alpha >> 3; \
222 i = ((int)(length) & 3); \
223 for(; i > 0; --i) { \
224 Uint32 s = *srcp++; \
226 s = (s | s << 16) & 0x07e0f81f; \
227 d = (d | d << 16) & 0x07e0f81f; \
228 d += (s - d) * ALPHA >> 5; \
230 *dstp++ = d | d >> 16; \
233 i = (int)(length) - n; \
234 for(; i > 0; --i) { \
235 movq_m2r((*dstp), mm3); \
236 movq_m2r((*srcp), mm2); \
237 movq_r2r(mm2, mm5); \
238 pand_r2r(mm1 , mm5); \
239 psrlq_i2r(11, mm5); \
240 movq_r2r(mm3, mm6); \
241 pand_r2r(mm1 , mm6); \
242 psrlq_i2r(11, mm6); \
243 psubw_r2r(mm6, mm5); \
244 pmullw_r2r(mm0, mm5); \
246 paddw_r2r(mm5, mm6); \
247 psllq_i2r(11, mm6); \
248 pand_r2r(mm1, mm6); \
249 movq_r2r(mm4, mm5); \
251 pand_r2r(mm5, mm3); \
253 movq_r2r(mm2, mm5); \
254 pand_r2r(mm4 , mm5); \
256 movq_r2r(mm3, mm6); \
257 pand_r2r(mm4 , mm6); \
259 psubw_r2r(mm6, mm5); \
260 pmullw_r2r(mm0, mm5); \
262 paddw_r2r(mm5, mm6); \
264 pand_r2r(mm4, mm6); \
265 movq_r2r(mm1, mm5); \
267 pand_r2r(mm5, mm3); \
269 movq_r2r(mm2, mm5); \
270 pand_r2r(mm7 , mm5); \
271 movq_r2r(mm3, mm6); \
272 pand_r2r(mm7 , mm6); \
273 psubw_r2r(mm6, mm5); \
274 pmullw_r2r(mm0, mm5); \
276 paddw_r2r(mm5, mm6); \
277 pand_r2r(mm7, mm6); \
278 movq_r2r(mm1, mm5); \
280 pand_r2r(mm5, mm3); \
282 movq_r2m(mm3, *dstp); \
290 #define ALPHA_BLIT16_555MMX(to, from, length, bpp, alpha) \
293 Uint16 *srcp = (Uint16 *)(from); \
294 Uint16 *dstp = (Uint16 *)(to); \
295 Uint32 ALPHA = 0x7C00; \
296 movd_m2r(*(&ALPHA), mm1); \
297 punpcklwd_r2r(mm1, mm1); \
298 punpcklwd_r2r(mm1, mm1); \
300 movd_m2r(*(&ALPHA), mm4); \
301 punpcklwd_r2r(mm4, mm4); \
302 punpcklwd_r2r(mm4, mm4); \
304 movd_m2r(*(&ALPHA), mm7); \
305 punpcklwd_r2r(mm7, mm7); \
306 punpcklwd_r2r(mm7, mm7); \
308 i = (Uint32)alpha | (Uint32)alpha << 16; \
309 movd_m2r(*(&i), mm0); \
310 punpckldq_r2r(mm0, mm0); \
311 i = ((int)(length) & 3); \
312 ALPHA = alpha >> 3; \
313 for(; i > 0; --i) { \
314 Uint32 s = *srcp++; \
316 s = (s | s << 16) & 0x03e07c1f; \
317 d = (d | d << 16) & 0x03e07c1f; \
318 d += (s - d) * ALPHA >> 5; \
320 *dstp++ = d | d >> 16; \
323 i = (int)(length) - n; \
324 for(; i > 0; --i) { \
325 movq_m2r((*dstp), mm3); \
326 movq_m2r((*srcp), mm2); \
327 movq_r2r(mm2, mm5); \
328 pand_r2r(mm1 , mm5); \
329 psrlq_i2r(10, mm5); \
330 movq_r2r(mm3, mm6); \
331 pand_r2r(mm1 , mm6); \
332 psrlq_i2r(10, mm6); \
333 psubw_r2r(mm6, mm5); \
334 pmullw_r2r(mm0, mm5); \
336 paddw_r2r(mm5, mm6); \
337 psllq_i2r(10, mm6); \
338 pand_r2r(mm1, mm6); \
339 movq_r2r(mm4, mm5); \
341 pand_r2r(mm5, mm3); \
343 movq_r2r(mm2, mm5); \
344 pand_r2r(mm4 , mm5); \
346 movq_r2r(mm3, mm6); \
347 pand_r2r(mm4 , mm6); \
349 psubw_r2r(mm6, mm5); \
350 pmullw_r2r(mm0, mm5); \
352 paddw_r2r(mm5, mm6); \
354 pand_r2r(mm4, mm6); \
355 movq_r2r(mm1, mm5); \
357 pand_r2r(mm5, mm3); \
359 movq_r2r(mm2, mm5); \
360 pand_r2r(mm7 , mm5); \
361 movq_r2r(mm3, mm6); \
362 pand_r2r(mm7 , mm6); \
363 psubw_r2r(mm6, mm5); \
364 pmullw_r2r(mm0, mm5); \
366 paddw_r2r(mm5, mm6); \
367 pand_r2r(mm7, mm6); \
368 movq_r2r(mm1, mm5); \
370 pand_r2r(mm5, mm3); \
372 movq_r2m(mm3, *dstp); \
383 * For 32bpp pixels on the form 0x00rrggbb:
384 * If we treat the middle component separately, we can process the two
385 * remaining in parallel. This is safe to do because of the gap to the left
386 * of each component, so the bits from the multiplication don't collide.
387 * This can be used for any RGB permutation of course.
389 #define ALPHA_BLIT32_888(to, from, length, bpp, alpha) \
392 Uint32 *src = (Uint32 *)(from); \
393 Uint32 *dst = (Uint32 *)(to); \
394 for(i = 0; i < (int)(length); i++) { \
397 Uint32 s1 = s & 0xff00ff; \
398 Uint32 d1 = d & 0xff00ff; \
399 d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff; \
402 d = (d + ((s - d) * alpha >> 8)) & 0xff00; \
408 * For 16bpp pixels we can go a step further: put the middle component
409 * in the high 16 bits of a 32 bit word, and process all three RGB
410 * components at the same time. Since the smallest gap is here just
411 * 5 bits, we have to scale alpha down to 5 bits as well.
413 #define ALPHA_BLIT16_565(to, from, length, bpp, alpha) \
416 Uint16 *src = (Uint16 *)(from); \
417 Uint16 *dst = (Uint16 *)(to); \
418 Uint32 ALPHA = alpha >> 3; \
419 for(i = 0; i < (int)(length); i++) { \
422 s = (s | s << 16) & 0x07e0f81f; \
423 d = (d | d << 16) & 0x07e0f81f; \
424 d += (s - d) * ALPHA >> 5; \
426 *dst++ = (Uint16)(d | d >> 16); \
430 #define ALPHA_BLIT16_555(to, from, length, bpp, alpha) \
433 Uint16 *src = (Uint16 *)(from); \
434 Uint16 *dst = (Uint16 *)(to); \
435 Uint32 ALPHA = alpha >> 3; \
436 for(i = 0; i < (int)(length); i++) { \
439 s = (s | s << 16) & 0x03e07c1f; \
440 d = (d | d << 16) & 0x03e07c1f; \
441 d += (s - d) * ALPHA >> 5; \
443 *dst++ = (Uint16)(d | d >> 16); \
448 * The general slow catch-all function, for remaining depths and formats
450 #define ALPHA_BLIT_ANY(to, from, length, bpp, alpha) \
455 for(i = 0; i < (int)(length); i++) { \
457 unsigned rs, gs, bs, rd, gd, bd; \
460 s = *(Uint16 *)src; \
461 d = *(Uint16 *)dst; \
464 if(SDL_BYTEORDER == SDL_BIG_ENDIAN) { \
465 s = (src[0] << 16) | (src[1] << 8) | src[2]; \
466 d = (dst[0] << 16) | (dst[1] << 8) | dst[2]; \
468 s = (src[2] << 16) | (src[1] << 8) | src[0]; \
469 d = (dst[2] << 16) | (dst[1] << 8) | dst[0]; \
473 s = *(Uint32 *)src; \
474 d = *(Uint32 *)dst; \
477 RGB_FROM_PIXEL(s, fmt, rs, gs, bs); \
478 RGB_FROM_PIXEL(d, fmt, rd, gd, bd); \
479 rd += (rs - rd) * alpha >> 8; \
480 gd += (gs - gd) * alpha >> 8; \
481 bd += (bs - bd) * alpha >> 8; \
482 PIXEL_FROM_RGB(d, fmt, rd, gd, bd); \
485 *(Uint16 *)dst = (Uint16)d; \
488 if(SDL_BYTEORDER == SDL_BIG_ENDIAN) { \
489 dst[0] = (Uint8)(d >> 16); \
490 dst[1] = (Uint8)(d >> 8); \
491 dst[2] = (Uint8)(d); \
494 dst[1] = (Uint8)(d >> 8); \
495 dst[2] = (Uint8)(d >> 16); \
499 *(Uint32 *)dst = d; \
509 #define ALPHA_BLIT32_888_50MMX(to, from, length, bpp, alpha) \
511 Uint32 *srcp = (Uint32 *)(from); \
512 Uint32 *dstp = (Uint32 *)(to); \
513 int i = 0x00fefefe; \
514 movd_m2r(*(&i), mm4); \
515 punpckldq_r2r(mm4, mm4); \
517 movd_m2r(*(&i), mm3); \
518 punpckldq_r2r(mm3, mm3); \
521 Uint32 s = *srcp++; \
523 *dstp++ = (((s & 0x00fefefe) + (d & 0x00fefefe)) >> 1) \
524 + (s & d & 0x00010101); \
527 for(; i > 0; --i) { \
528 movq_m2r((*dstp), mm2); /* dst -> mm2 */ \
529 movq_r2r(mm2, mm6); /* dst -> mm6 */ \
530 movq_m2r((*srcp), mm1); /* src -> mm1 */ \
531 movq_r2r(mm1, mm5); /* src -> mm5 */ \
532 pand_r2r(mm4, mm6); /* dst & 0x00fefefe -> mm6 */ \
533 pand_r2r(mm4, mm5); /* src & 0x00fefefe -> mm5 */ \
534 paddd_r2r(mm6, mm5); /* (dst & 0x00fefefe) + (dst & 0x00fefefe) -> mm5 */ \
536 pand_r2r(mm1, mm2); /* s & d -> mm2 */ \
537 pand_r2r(mm3, mm2); /* s & d & 0x00010101 -> mm2 */ \
538 paddd_r2r(mm5, mm2); \
539 movq_r2m(mm2, (*dstp)); \
550 * Special case: 50% alpha (alpha=128)
551 * This is treated specially because it can be optimized very well, and
552 * since it is good for many cases of semi-translucency.
553 * The theory is to do all three components at the same time:
554 * First zero the lowest bit of each component, which gives us room to
555 * add them. Then shift right and add the sum of the lowest bits.
557 #define ALPHA_BLIT32_888_50(to, from, length, bpp, alpha) \
560 Uint32 *src = (Uint32 *)(from); \
561 Uint32 *dst = (Uint32 *)(to); \
562 for(i = 0; i < (int)(length); i++) { \
565 *dst++ = (((s & 0x00fefefe) + (d & 0x00fefefe)) >> 1) \
566 + (s & d & 0x00010101); \
571 * For 16bpp, we can actually blend two pixels in parallel, if we take
572 * care to shift before we add, not after.
575 /* helper: blend a single 16 bit pixel at 50% */
576 #define BLEND16_50(dst, src, mask) \
580 *dst++ = (Uint16)((((s & mask) + (d & mask)) >> 1) + \
581 (s & d & (~mask & 0xffff))); \
584 /* basic 16bpp blender. mask is the pixels to keep when adding. */
585 #define ALPHA_BLIT16_50(to, from, length, bpp, alpha, mask) \
587 unsigned n = (length); \
588 Uint16 *src = (Uint16 *)(from); \
589 Uint16 *dst = (Uint16 *)(to); \
590 if(((uintptr_t)src ^ (uintptr_t)dst) & 3) { \
591 /* source and destination not in phase, blit one by one */ \
593 BLEND16_50(dst, src, mask); \
595 if((uintptr_t)src & 3) { \
596 /* first odd pixel */ \
597 BLEND16_50(dst, src, mask); \
600 for(; n > 1; n -= 2) { \
601 Uint32 s = *(Uint32 *)src; \
602 Uint32 d = *(Uint32 *)dst; \
603 *(Uint32 *)dst = ((s & (mask | mask << 16)) >> 1) \
604 + ((d & (mask | mask << 16)) >> 1) \
605 + (s & d & (~(mask | mask << 16))); \
610 BLEND16_50(dst, src, mask); /* last odd pixel */ \
614 #define ALPHA_BLIT16_565_50(to, from, length, bpp, alpha) \
615 ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xf7de)
617 #define ALPHA_BLIT16_555_50(to, from, length, bpp, alpha) \
618 ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xfbde)
622 #define CHOOSE_BLIT(blitter, alpha, fmt) \
625 switch(fmt->BytesPerPixel) { \
626 case 1: blitter(1, Uint8, OPAQUE_BLIT); break; \
627 case 2: blitter(2, Uint8, OPAQUE_BLIT); break; \
628 case 3: blitter(3, Uint8, OPAQUE_BLIT); break; \
629 case 4: blitter(4, Uint16, OPAQUE_BLIT); break; \
632 switch(fmt->BytesPerPixel) { \
634 /* No 8bpp alpha blitting */ \
638 switch(fmt->Rmask | fmt->Gmask | fmt->Bmask) { \
640 if(fmt->Gmask == 0x07e0 \
641 || fmt->Rmask == 0x07e0 \
642 || fmt->Bmask == 0x07e0) { \
644 blitter(2, Uint8, ALPHA_BLIT16_565_50); \
647 blitter(2, Uint8, ALPHA_BLIT16_565MMX); \
649 blitter(2, Uint8, ALPHA_BLIT16_565); \
656 if(fmt->Gmask == 0x03e0 \
657 || fmt->Rmask == 0x03e0 \
658 || fmt->Bmask == 0x03e0) { \
660 blitter(2, Uint8, ALPHA_BLIT16_555_50); \
663 blitter(2, Uint8, ALPHA_BLIT16_555MMX); \
665 blitter(2, Uint8, ALPHA_BLIT16_555); \
673 blitter(2, Uint8, ALPHA_BLIT_ANY); \
678 blitter(3, Uint8, ALPHA_BLIT_ANY); \
682 if((fmt->Rmask | fmt->Gmask | fmt->Bmask) == 0x00ffffff \
683 && (fmt->Gmask == 0xff00 || fmt->Rmask == 0xff00 \
684 || fmt->Bmask == 0xff00)) { \
688 blitter(4, Uint16, ALPHA_BLIT32_888_50MMX);\
690 blitter(4, Uint16, ALPHA_BLIT32_888_50);\
695 blitter(4, Uint16, ALPHA_BLIT32_888MMX);\
697 blitter(4, Uint16, ALPHA_BLIT32_888); \
700 blitter(4, Uint16, ALPHA_BLIT_ANY); \
708 #define CHOOSE_BLIT(blitter, alpha, fmt) \
711 switch(fmt->BytesPerPixel) { \
712 case 1: blitter(1, Uint8, OPAQUE_BLIT); break; \
713 case 2: blitter(2, Uint8, OPAQUE_BLIT); break; \
714 case 3: blitter(3, Uint8, OPAQUE_BLIT); break; \
715 case 4: blitter(4, Uint16, OPAQUE_BLIT); break; \
718 switch(fmt->BytesPerPixel) { \
720 /* No 8bpp alpha blitting */ \
724 switch(fmt->Rmask | fmt->Gmask | fmt->Bmask) { \
726 if(fmt->Gmask == 0x07e0 \
727 || fmt->Rmask == 0x07e0 \
728 || fmt->Bmask == 0x07e0) { \
730 blitter(2, Uint8, ALPHA_BLIT16_565_50); \
732 blitter(2, Uint8, ALPHA_BLIT16_565); \
739 if(fmt->Gmask == 0x03e0 \
740 || fmt->Rmask == 0x03e0 \
741 || fmt->Bmask == 0x03e0) { \
743 blitter(2, Uint8, ALPHA_BLIT16_555_50); \
745 blitter(2, Uint8, ALPHA_BLIT16_555); \
753 blitter(2, Uint8, ALPHA_BLIT_ANY); \
758 blitter(3, Uint8, ALPHA_BLIT_ANY); \
762 if((fmt->Rmask | fmt->Gmask | fmt->Bmask) == 0x00ffffff \
763 && (fmt->Gmask == 0xff00 || fmt->Rmask == 0xff00 \
764 || fmt->Bmask == 0xff00)) { \
766 blitter(4, Uint16, ALPHA_BLIT32_888_50); \
768 blitter(4, Uint16, ALPHA_BLIT32_888); \
770 blitter(4, Uint16, ALPHA_BLIT_ANY); \
779 * This takes care of the case when the surface is clipped on the left and/or
780 * right. Top clipping has already been taken care of.
783 RLEClipBlit(int w, Uint8 * srcbuf, SDL_Surface * dst,
784 Uint8 * dstbuf, SDL_Rect * srcrect, unsigned alpha)
786 SDL_PixelFormat *fmt = dst->format;
788 #define RLECLIPBLIT(bpp, Type, do_blit) \
790 int linecount = srcrect->h; \
792 int left = srcrect->x; \
793 int right = left + srcrect->w; \
794 dstbuf -= left * bpp; \
797 ofs += *(Type *)srcbuf; \
798 run = ((Type *)srcbuf)[1]; \
799 srcbuf += 2 * sizeof(Type); \
801 /* clip to left and right borders */ \
806 if(left - ofs > 0) { \
807 start = left - ofs; \
810 goto nocopy ## bpp ## do_blit; \
812 startcol = ofs + start; \
813 if(len > right - startcol) \
814 len = right - startcol; \
815 do_blit(dstbuf + startcol * bpp, srcbuf + start * bpp, \
818 nocopy ## bpp ## do_blit: \
819 srcbuf += run * bpp; \
825 dstbuf += dst->pitch; \
832 CHOOSE_BLIT(RLECLIPBLIT, alpha, fmt);
839 /* blit a colorkeyed RLE surface */
841 SDL_RLEBlit(SDL_Surface * src, SDL_Rect * srcrect,
842 SDL_Surface * dst, SDL_Rect * dstrect)
850 /* Lock the destination if necessary */
851 if (SDL_MUSTLOCK(dst)) {
852 if (SDL_LockSurface(dst) < 0) {
857 /* Set up the source and destination pointers */
860 dstbuf = (Uint8 *) dst->pixels
861 + y * dst->pitch + x * src->format->BytesPerPixel;
862 srcbuf = (Uint8 *) src->map->sw_data->aux_data;
865 /* skip lines at the top if neccessary */
866 int vskip = srcrect->y;
870 #define RLESKIP(bpp, Type) \
873 ofs += *(Type *)srcbuf; \
874 run = ((Type *)srcbuf)[1]; \
875 srcbuf += sizeof(Type) * 2; \
877 srcbuf += run * bpp; \
888 switch (src->format->BytesPerPixel) {
908 alpha = (src->flags & SDL_SRCALPHA) == SDL_SRCALPHA
909 ? src->format->alpha : 255;
910 /* if left or right edge clipping needed, call clip blit */
911 if (srcrect->x || srcrect->w != src->w) {
912 RLEClipBlit(w, srcbuf, dst, dstbuf, srcrect, alpha);
914 SDL_PixelFormat *fmt = src->format;
916 #define RLEBLIT(bpp, Type, do_blit) \
918 int linecount = srcrect->h; \
922 ofs += *(Type *)srcbuf; \
923 run = ((Type *)srcbuf)[1]; \
924 srcbuf += 2 * sizeof(Type); \
926 do_blit(dstbuf + ofs * bpp, srcbuf, run, bpp, alpha); \
927 srcbuf += run * bpp; \
933 dstbuf += dst->pitch; \
940 CHOOSE_BLIT(RLEBLIT, alpha, fmt);
946 /* Unlock the destination if necessary */
947 if (SDL_MUSTLOCK(dst)) {
948 SDL_UnlockSurface(dst);
956 * Per-pixel blitting macros for translucent pixels:
957 * These use the same techniques as the per-surface blitting macros
961 * For 32bpp pixels, we have made sure the alpha is stored in the top
962 * 8 bits, so proceed as usual
964 #define BLIT_TRANSL_888(src, dst) \
968 unsigned alpha = s >> 24; \
969 Uint32 s1 = s & 0xff00ff; \
970 Uint32 d1 = d & 0xff00ff; \
971 d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff; \
974 d = (d + ((s - d) * alpha >> 8)) & 0xff00; \
979 * For 16bpp pixels, we have stored the 5 most significant alpha bits in
980 * bits 5-10. As before, we can process all 3 RGB components at the same time.
982 #define BLIT_TRANSL_565(src, dst) \
986 unsigned alpha = (s & 0x3e0) >> 5; \
988 d = (d | d << 16) & 0x07e0f81f; \
989 d += (s - d) * alpha >> 5; \
991 dst = (Uint16)(d | d >> 16); \
994 #define BLIT_TRANSL_555(src, dst) \
998 unsigned alpha = (s & 0x3e0) >> 5; \
1000 d = (d | d << 16) & 0x03e07c1f; \
1001 d += (s - d) * alpha >> 5; \
1003 dst = (Uint16)(d | d >> 16); \
1006 /* used to save the destination format in the encoding. Designed to be
1007 macro-compatible with SDL_PixelFormat but without the unneeded fields */
1010 Uint8 BytesPerPixel;
1024 /* blit a pixel-alpha RLE surface clipped at the right and/or left edges */
1026 RLEAlphaClipBlit(int w, Uint8 * srcbuf, SDL_Surface * dst,
1027 Uint8 * dstbuf, SDL_Rect * srcrect)
1029 SDL_PixelFormat *df = dst->format;
1031 * clipped blitter: Ptype is the destination pixel type,
1032 * Ctype the translucent count type, and do_blend the macro
1033 * to blend one pixel.
1035 #define RLEALPHACLIPBLIT(Ptype, Ctype, do_blend) \
1037 int linecount = srcrect->h; \
1038 int left = srcrect->x; \
1039 int right = left + srcrect->w; \
1040 dstbuf -= left * sizeof(Ptype); \
1043 /* blit opaque pixels on one line */ \
1046 ofs += ((Ctype *)srcbuf)[0]; \
1047 run = ((Ctype *)srcbuf)[1]; \
1048 srcbuf += 2 * sizeof(Ctype); \
1050 /* clip to left and right borders */ \
1053 if(left - cofs > 0) { \
1054 crun -= left - cofs; \
1057 if(crun > right - cofs) \
1058 crun = right - cofs; \
1060 PIXEL_COPY(dstbuf + cofs * sizeof(Ptype), \
1061 srcbuf + (cofs - ofs) * sizeof(Ptype), \
1062 (unsigned)crun, sizeof(Ptype)); \
1063 srcbuf += run * sizeof(Ptype); \
1068 /* skip padding if necessary */ \
1069 if(sizeof(Ptype) == 2) \
1070 srcbuf += (uintptr_t)srcbuf & 2; \
1071 /* blit translucent pixels on the same line */ \
1075 ofs += ((Uint16 *)srcbuf)[0]; \
1076 run = ((Uint16 *)srcbuf)[1]; \
1079 /* clip to left and right borders */ \
1082 if(left - cofs > 0) { \
1083 crun -= left - cofs; \
1086 if(crun > right - cofs) \
1087 crun = right - cofs; \
1089 Ptype *dst = (Ptype *)dstbuf + cofs; \
1090 Uint32 *src = (Uint32 *)srcbuf + (cofs - ofs); \
1092 for(i = 0; i < crun; i++) \
1093 do_blend(src[i], dst[i]); \
1095 srcbuf += run * 4; \
1099 dstbuf += dst->pitch; \
1100 } while(--linecount); \
1103 switch (df->BytesPerPixel) {
1105 if (df->Gmask == 0x07e0 || df->Rmask == 0x07e0 || df->Bmask == 0x07e0)
1106 RLEALPHACLIPBLIT(Uint16, Uint8, BLIT_TRANSL_565);
1108 RLEALPHACLIPBLIT(Uint16, Uint8, BLIT_TRANSL_555);
1111 RLEALPHACLIPBLIT(Uint32, Uint16, BLIT_TRANSL_888);
1116 /* blit a pixel-alpha RLE surface */
1118 SDL_RLEAlphaBlit(SDL_Surface * src, SDL_Rect * srcrect,
1119 SDL_Surface * dst, SDL_Rect * dstrect)
1123 Uint8 *srcbuf, *dstbuf;
1124 SDL_PixelFormat *df = dst->format;
1126 /* Lock the destination if necessary */
1127 if (SDL_MUSTLOCK(dst)) {
1128 if (SDL_LockSurface(dst) < 0) {
1135 dstbuf = (Uint8 *) dst->pixels + y * dst->pitch + x * df->BytesPerPixel;
1136 srcbuf = (Uint8 *) src->map->sw_data->aux_data + sizeof(RLEDestFormat);
1139 /* skip lines at the top if necessary */
1140 int vskip = srcrect->y;
1143 if (df->BytesPerPixel == 2) {
1144 /* the 16/32 interleaved format */
1146 /* skip opaque line */
1162 srcbuf += (uintptr_t) srcbuf & 2;
1164 /* skip translucent line */
1168 ofs += ((Uint16 *) srcbuf)[0];
1169 run = ((Uint16 *) srcbuf)[1];
1170 srcbuf += 4 * (run + 1);
1177 /* the 32/32 interleaved format */
1178 vskip <<= 1; /* opaque and translucent have same format */
1183 ofs += ((Uint16 *) srcbuf)[0];
1184 run = ((Uint16 *) srcbuf)[1];
1199 /* if left or right edge clipping needed, call clip blit */
1200 if (srcrect->x || srcrect->w != src->w) {
1201 RLEAlphaClipBlit(w, srcbuf, dst, dstbuf, srcrect);
1205 * non-clipped blitter. Ptype is the destination pixel type,
1206 * Ctype the translucent count type, and do_blend the
1207 * macro to blend one pixel.
1209 #define RLEALPHABLIT(Ptype, Ctype, do_blend) \
1211 int linecount = srcrect->h; \
1214 /* blit opaque pixels on one line */ \
1217 ofs += ((Ctype *)srcbuf)[0]; \
1218 run = ((Ctype *)srcbuf)[1]; \
1219 srcbuf += 2 * sizeof(Ctype); \
1221 PIXEL_COPY(dstbuf + ofs * sizeof(Ptype), srcbuf, \
1222 run, sizeof(Ptype)); \
1223 srcbuf += run * sizeof(Ptype); \
1228 /* skip padding if necessary */ \
1229 if(sizeof(Ptype) == 2) \
1230 srcbuf += (uintptr_t)srcbuf & 2; \
1231 /* blit translucent pixels on the same line */ \
1235 ofs += ((Uint16 *)srcbuf)[0]; \
1236 run = ((Uint16 *)srcbuf)[1]; \
1239 Ptype *dst = (Ptype *)dstbuf + ofs; \
1241 for(i = 0; i < run; i++) { \
1242 Uint32 src = *(Uint32 *)srcbuf; \
1243 do_blend(src, *dst); \
1250 dstbuf += dst->pitch; \
1251 } while(--linecount); \
1254 switch (df->BytesPerPixel) {
1256 if (df->Gmask == 0x07e0 || df->Rmask == 0x07e0
1257 || df->Bmask == 0x07e0)
1258 RLEALPHABLIT(Uint16, Uint8, BLIT_TRANSL_565);
1260 RLEALPHABLIT(Uint16, Uint8, BLIT_TRANSL_555);
1263 RLEALPHABLIT(Uint32, Uint16, BLIT_TRANSL_888);
1269 /* Unlock the destination if necessary */
1270 if (SDL_MUSTLOCK(dst)) {
1271 SDL_UnlockSurface(dst);
1277 * Auxiliary functions:
1278 * The encoding functions take 32bpp rgb + a, and
1279 * return the number of bytes copied to the destination.
1280 * The decoding functions copy to 32bpp rgb + a, and
1281 * return the number of bytes copied from the source.
1282 * These are only used in the encoder and un-RLE code and are therefore not
1286 /* encode 32bpp rgb + a into 16bpp rgb, losing alpha */
1288 copy_opaque_16(void *dst, Uint32 * src, int n,
1289 SDL_PixelFormat * sfmt, SDL_PixelFormat * dfmt)
1293 for (i = 0; i < n; i++) {
1295 RGB_FROM_PIXEL(*src, sfmt, r, g, b);
1296 PIXEL_FROM_RGB(*d, dfmt, r, g, b);
1303 /* decode opaque pixels from 16bpp to 32bpp rgb + a */
1305 uncopy_opaque_16(Uint32 * dst, void *src, int n,
1306 RLEDestFormat * sfmt, SDL_PixelFormat * dfmt)
1310 unsigned alpha = dfmt->Amask ? 255 : 0;
1311 for (i = 0; i < n; i++) {
1313 RGB_FROM_PIXEL(*s, sfmt, r, g, b);
1314 PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, alpha);
1323 /* encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 565 */
1325 copy_transl_565(void *dst, Uint32 * src, int n,
1326 SDL_PixelFormat * sfmt, SDL_PixelFormat * dfmt)
1330 for (i = 0; i < n; i++) {
1331 unsigned r, g, b, a;
1333 RGBA_FROM_8888(*src, sfmt, r, g, b, a);
1334 PIXEL_FROM_RGB(pix, dfmt, r, g, b);
1335 *d = ((pix & 0x7e0) << 16) | (pix & 0xf81f) | ((a << 2) & 0x7e0);
1342 /* encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 555 */
1344 copy_transl_555(void *dst, Uint32 * src, int n,
1345 SDL_PixelFormat * sfmt, SDL_PixelFormat * dfmt)
1349 for (i = 0; i < n; i++) {
1350 unsigned r, g, b, a;
1352 RGBA_FROM_8888(*src, sfmt, r, g, b, a);
1353 PIXEL_FROM_RGB(pix, dfmt, r, g, b);
1354 *d = ((pix & 0x3e0) << 16) | (pix & 0xfc1f) | ((a << 2) & 0x3e0);
1361 /* decode translucent pixels from 32bpp GORAB to 32bpp rgb + a */
1363 uncopy_transl_16(Uint32 * dst, void *src, int n,
1364 RLEDestFormat * sfmt, SDL_PixelFormat * dfmt)
1368 for (i = 0; i < n; i++) {
1369 unsigned r, g, b, a;
1371 a = (pix & 0x3e0) >> 2;
1372 pix = (pix & ~0x3e0) | pix >> 16;
1373 RGB_FROM_PIXEL(pix, sfmt, r, g, b);
1374 PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, a);
1380 /* encode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) */
1382 copy_32(void *dst, Uint32 * src, int n,
1383 SDL_PixelFormat * sfmt, SDL_PixelFormat * dfmt)
1387 for (i = 0; i < n; i++) {
1388 unsigned r, g, b, a;
1390 RGBA_FROM_8888(*src, sfmt, r, g, b, a);
1391 PIXEL_FROM_RGB(pixel, dfmt, r, g, b);
1392 *d++ = pixel | a << 24;
1398 /* decode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) */
1400 uncopy_32(Uint32 * dst, void *src, int n,
1401 RLEDestFormat * sfmt, SDL_PixelFormat * dfmt)
1405 for (i = 0; i < n; i++) {
1406 unsigned r, g, b, a;
1407 Uint32 pixel = *s++;
1408 RGB_FROM_PIXEL(pixel, sfmt, r, g, b);
1410 PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, a);
1416 #define ISOPAQUE(pixel, fmt) ((((pixel) & fmt->Amask) >> fmt->Ashift) == 255)
1418 #define ISTRANSL(pixel, fmt) \
1419 ((unsigned)((((pixel) & fmt->Amask) >> fmt->Ashift) - 1U) < 254U)
1421 /* convert surface to be quickly alpha-blittable onto dest, if possible */
1423 RLEAlphaSurface(SDL_Surface * surface)
1426 SDL_PixelFormat *df;
1429 int max_transl_run = 65535;
1431 Uint8 *rlebuf, *dst;
1432 int (*copy_opaque) (void *, Uint32 *, int,
1433 SDL_PixelFormat *, SDL_PixelFormat *);
1434 int (*copy_transl) (void *, Uint32 *, int,
1435 SDL_PixelFormat *, SDL_PixelFormat *);
1437 dest = surface->map->dst;
1441 if (surface->format->BitsPerPixel != 32)
1442 return -1; /* only 32bpp source supported */
1444 /* find out whether the destination is one we support,
1445 and determine the max size of the encoded result */
1446 masksum = df->Rmask | df->Gmask | df->Bmask;
1447 switch (df->BytesPerPixel) {
1449 /* 16bpp: only support 565 and 555 formats */
1452 if (df->Gmask == 0x07e0
1453 || df->Rmask == 0x07e0 || df->Bmask == 0x07e0) {
1454 copy_opaque = copy_opaque_16;
1455 copy_transl = copy_transl_565;
1460 if (df->Gmask == 0x03e0
1461 || df->Rmask == 0x03e0 || df->Bmask == 0x03e0) {
1462 copy_opaque = copy_opaque_16;
1463 copy_transl = copy_transl_555;
1470 max_opaque_run = 255; /* runs stored as bytes */
1472 /* worst case is alternating opaque and translucent pixels,
1473 with room for alignment padding between lines */
1474 maxsize = surface->h * (2 + (4 + 2) * (surface->w + 1)) + 2;
1477 if (masksum != 0x00ffffff)
1478 return -1; /* requires unused high byte */
1479 copy_opaque = copy_32;
1480 copy_transl = copy_32;
1481 max_opaque_run = 255; /* runs stored as short ints */
1483 /* worst case is alternating opaque and translucent pixels */
1484 maxsize = surface->h * 2 * 4 * (surface->w + 1) + 4;
1487 return -1; /* anything else unsupported right now */
1490 maxsize += sizeof(RLEDestFormat);
1491 rlebuf = (Uint8 *) SDL_malloc(maxsize);
1497 /* save the destination format so we can undo the encoding later */
1498 RLEDestFormat *r = (RLEDestFormat *) rlebuf;
1499 r->BytesPerPixel = df->BytesPerPixel;
1500 r->Rloss = df->Rloss;
1501 r->Gloss = df->Gloss;
1502 r->Bloss = df->Bloss;
1503 r->Rshift = df->Rshift;
1504 r->Gshift = df->Gshift;
1505 r->Bshift = df->Bshift;
1506 r->Ashift = df->Ashift;
1507 r->Rmask = df->Rmask;
1508 r->Gmask = df->Gmask;
1509 r->Bmask = df->Bmask;
1510 r->Amask = df->Amask;
1512 dst = rlebuf + sizeof(RLEDestFormat);
1514 /* Do the actual encoding */
1517 int h = surface->h, w = surface->w;
1518 SDL_PixelFormat *sf = surface->format;
1519 Uint32 *src = (Uint32 *) surface->pixels;
1520 Uint8 *lastline = dst; /* end of last non-blank line */
1522 /* opaque counts are 8 or 16 bits, depending on target depth */
1523 #define ADD_OPAQUE_COUNTS(n, m) \
1524 if(df->BytesPerPixel == 4) { \
1525 ((Uint16 *)dst)[0] = n; \
1526 ((Uint16 *)dst)[1] = m; \
1534 /* translucent counts are always 16 bit */
1535 #define ADD_TRANSL_COUNTS(n, m) \
1536 (((Uint16 *)dst)[0] = n, ((Uint16 *)dst)[1] = m, dst += 4)
1538 for (y = 0; y < h; y++) {
1539 int runstart, skipstart;
1541 /* First encode all opaque pixels of a scan line */
1546 while (x < w && !ISOPAQUE(src[x], sf))
1549 while (x < w && ISOPAQUE(src[x], sf))
1551 skip = runstart - skipstart;
1555 while (skip > max_opaque_run) {
1556 ADD_OPAQUE_COUNTS(max_opaque_run, 0);
1557 skip -= max_opaque_run;
1559 len = MIN(run, max_opaque_run);
1560 ADD_OPAQUE_COUNTS(skip, len);
1561 dst += copy_opaque(dst, src + runstart, len, sf, df);
1565 len = MIN(run, max_opaque_run);
1566 ADD_OPAQUE_COUNTS(0, len);
1567 dst += copy_opaque(dst, src + runstart, len, sf, df);
1574 /* Make sure the next output address is 32-bit aligned */
1575 dst += (uintptr_t) dst & 2;
1577 /* Next, encode all translucent pixels of the same scan line */
1582 while (x < w && !ISTRANSL(src[x], sf))
1585 while (x < w && ISTRANSL(src[x], sf))
1587 skip = runstart - skipstart;
1588 blankline &= (skip == w);
1590 while (skip > max_transl_run) {
1591 ADD_TRANSL_COUNTS(max_transl_run, 0);
1592 skip -= max_transl_run;
1594 len = MIN(run, max_transl_run);
1595 ADD_TRANSL_COUNTS(skip, len);
1596 dst += copy_transl(dst, src + runstart, len, sf, df);
1600 len = MIN(run, max_transl_run);
1601 ADD_TRANSL_COUNTS(0, len);
1602 dst += copy_transl(dst, src + runstart, len, sf, df);
1611 src += surface->pitch >> 2;
1613 dst = lastline; /* back up past trailing blank lines */
1614 ADD_OPAQUE_COUNTS(0, 0);
1617 #undef ADD_OPAQUE_COUNTS
1618 #undef ADD_TRANSL_COUNTS
1620 /* Now that we have it encoded, release the original pixels */
1621 if (!(surface->flags & SDL_PREALLOC)) {
1622 SDL_free(surface->pixels);
1623 surface->pixels = NULL;
1626 /* realloc the buffer to release unused memory */
1628 Uint8 *p = SDL_realloc(rlebuf, dst - rlebuf);
1631 surface->map->sw_data->aux_data = p;
1638 getpix_8(Uint8 * srcbuf)
1644 getpix_16(Uint8 * srcbuf)
1646 return *(Uint16 *) srcbuf;
1650 getpix_24(Uint8 * srcbuf)
1652 #if SDL_BYTEORDER == SDL_LIL_ENDIAN
1653 return srcbuf[0] + (srcbuf[1] << 8) + (srcbuf[2] << 16);
1655 return (srcbuf[0] << 16) + (srcbuf[1] << 8) + srcbuf[2];
1660 getpix_32(Uint8 * srcbuf)
1662 return *(Uint32 *) srcbuf;
1665 typedef Uint32(*getpix_func) (Uint8 *);
1667 static getpix_func getpixes[4] = {
1668 getpix_8, getpix_16, getpix_24, getpix_32
1672 RLEColorkeySurface(SDL_Surface * surface)
1674 Uint8 *rlebuf, *dst;
1677 Uint8 *srcbuf, *curbuf, *lastline;
1680 int bpp = surface->format->BytesPerPixel;
1682 Uint32 ckey, rgbmask;
1685 /* calculate the worst case size for the compressed surface */
1688 /* worst case is alternating opaque and transparent pixels,
1689 starting with an opaque pixel */
1690 maxsize = surface->h * 3 * (surface->w / 2 + 1) + 2;
1694 /* worst case is solid runs, at most 255 pixels wide */
1695 maxsize = surface->h * (2 * (surface->w / 255 + 1)
1696 + surface->w * bpp) + 2;
1699 /* worst case is solid runs, at most 65535 pixels wide */
1700 maxsize = surface->h * (4 * (surface->w / 65535 + 1)
1701 + surface->w * 4) + 4;
1705 rlebuf = (Uint8 *) SDL_malloc(maxsize);
1706 if (rlebuf == NULL) {
1711 /* Set up the conversion */
1712 srcbuf = (Uint8 *) surface->pixels;
1714 maxn = bpp == 4 ? 65535 : 255;
1717 rgbmask = ~surface->format->Amask;
1718 ckey = surface->format->colorkey & rgbmask;
1720 getpix = getpixes[bpp - 1];
1724 #define ADD_COUNTS(n, m) \
1726 ((Uint16 *)dst)[0] = n; \
1727 ((Uint16 *)dst)[1] = m; \
1735 for (y = 0; y < h; y++) {
1743 /* find run of transparent, then opaque pixels */
1744 while (x < w && (getpix(srcbuf + x * bpp) & rgbmask) == ckey)
1747 while (x < w && (getpix(srcbuf + x * bpp) & rgbmask) != ckey)
1749 skip = runstart - skipstart;
1754 /* encode segment */
1755 while (skip > maxn) {
1756 ADD_COUNTS(maxn, 0);
1759 len = MIN(run, maxn);
1760 ADD_COUNTS(skip, len);
1761 SDL_memcpy(dst, srcbuf + runstart * bpp, len * bpp);
1766 len = MIN(run, maxn);
1768 SDL_memcpy(dst, srcbuf + runstart * bpp, len * bpp);
1778 srcbuf += surface->pitch;
1780 dst = lastline; /* back up bast trailing blank lines */
1785 /* Now that we have it encoded, release the original pixels */
1786 if (!(surface->flags & SDL_PREALLOC)) {
1787 SDL_free(surface->pixels);
1788 surface->pixels = NULL;
1791 /* realloc the buffer to release unused memory */
1793 /* If realloc returns NULL, the original block is left intact */
1794 Uint8 *p = SDL_realloc(rlebuf, dst - rlebuf);
1797 surface->map->sw_data->aux_data = p;
1804 SDL_RLESurface(SDL_Surface * surface)
1808 /* Clear any previous RLE conversion */
1809 if ((surface->flags & SDL_RLEACCEL) == SDL_RLEACCEL) {
1810 SDL_UnRLESurface(surface, 1);
1813 /* We don't support RLE encoding of bitmaps */
1814 if (surface->format->BitsPerPixel < 8) {
1818 /* Lock the surface if it's in hardware */
1819 if (SDL_MUSTLOCK(surface)) {
1820 if (SDL_LockSurface(surface) < 0) {
1826 if ((surface->flags & SDL_SRCCOLORKEY) == SDL_SRCCOLORKEY) {
1827 retcode = RLEColorkeySurface(surface);
1829 if ((surface->flags & SDL_SRCALPHA) == SDL_SRCALPHA
1830 && surface->format->Amask != 0)
1831 retcode = RLEAlphaSurface(surface);
1833 retcode = -1; /* no RLE for per-surface alpha sans ckey */
1836 /* Unlock the surface if it's in hardware */
1837 if (SDL_MUSTLOCK(surface)) {
1838 SDL_UnlockSurface(surface);
1844 /* The surface is now accelerated */
1845 surface->flags |= SDL_RLEACCEL;
1851 * Un-RLE a surface with pixel alpha
1852 * This may not give back exactly the image before RLE-encoding; all
1853 * completely transparent pixels will be lost, and colour and alpha depth
1854 * may have been reduced (when encoding for 16bpp targets).
1857 UnRLEAlpha(SDL_Surface * surface)
1861 SDL_PixelFormat *sf = surface->format;
1862 RLEDestFormat *df = surface->map->sw_data->aux_data;
1863 int (*uncopy_opaque) (Uint32 *, void *, int,
1864 RLEDestFormat *, SDL_PixelFormat *);
1865 int (*uncopy_transl) (Uint32 *, void *, int,
1866 RLEDestFormat *, SDL_PixelFormat *);
1868 int bpp = df->BytesPerPixel;
1871 uncopy_opaque = uncopy_opaque_16;
1872 uncopy_transl = uncopy_transl_16;
1874 uncopy_opaque = uncopy_transl = uncopy_32;
1877 surface->pixels = SDL_malloc(surface->h * surface->pitch);
1878 if (!surface->pixels) {
1881 /* fill background with transparent pixels */
1882 SDL_memset(surface->pixels, 0, surface->h * surface->pitch);
1884 dst = surface->pixels;
1885 srcbuf = (Uint8 *) (df + 1);
1887 /* copy opaque pixels */
1896 ofs += ((Uint16 *) srcbuf)[0];
1897 run = ((Uint16 *) srcbuf)[1];
1901 srcbuf += uncopy_opaque(dst + ofs, srcbuf, run, df, sf);
1908 /* skip padding if needed */
1910 srcbuf += (uintptr_t) srcbuf & 2;
1912 /* copy translucent pixels */
1916 ofs += ((Uint16 *) srcbuf)[0];
1917 run = ((Uint16 *) srcbuf)[1];
1920 srcbuf += uncopy_transl(dst + ofs, srcbuf, run, df, sf);
1925 dst += surface->pitch >> 2;
1927 /* Make the compiler happy */
1932 SDL_UnRLESurface(SDL_Surface * surface, int recode)
1934 if ((surface->flags & SDL_RLEACCEL) == SDL_RLEACCEL) {
1935 surface->flags &= ~SDL_RLEACCEL;
1937 if (recode && !(surface->flags & SDL_PREALLOC)) {
1938 if ((surface->flags & SDL_SRCCOLORKEY) == SDL_SRCCOLORKEY) {
1940 unsigned alpha_flag;
1942 /* re-create the original surface */
1943 surface->pixels = SDL_malloc(surface->h * surface->pitch);
1944 if (!surface->pixels) {
1946 surface->flags |= SDL_RLEACCEL;
1950 /* fill it with the background colour */
1951 SDL_FillRect(surface, NULL, surface->format->colorkey);
1953 /* now render the encoded surface */
1954 full.x = full.y = 0;
1955 full.w = surface->w;
1956 full.h = surface->h;
1957 alpha_flag = surface->flags & SDL_SRCALPHA;
1958 surface->flags &= ~SDL_SRCALPHA; /* opaque blit */
1959 SDL_RLEBlit(surface, &full, surface, &full);
1960 surface->flags |= alpha_flag;
1962 if (!UnRLEAlpha(surface)) {
1964 surface->flags |= SDL_RLEACCEL;
1970 if (surface->map && surface->map->sw_data->aux_data) {
1971 SDL_free(surface->map->sw_data->aux_data);
1972 surface->map->sw_data->aux_data = NULL;
1977 /* vi: set ts=4 sw=4 expandtab: */