src/libm/k_cos.c
 author Ryan C. Gordon Tue, 28 Feb 2017 19:48:52 -0500 changeset 10922 5f4b80b748dd parent 6044 35448a5ea044 child 11683 48bcba563d9c permissions -rw-r--r--
raspberrypi: RPI_Destroy() should free the SDL_VideoDevice and its driverdata.
```     1 /* @(#)k_cos.c 5.1 93/09/24 */
```
```     2 /*
```
```     3  * ====================================================
```
```     4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
```
```     5  *
```
```     6  * Developed at SunPro, a Sun Microsystems, Inc. business.
```
```     7  * Permission to use, copy, modify, and distribute this
```
```     8  * software is freely granted, provided that this notice
```
```     9  * is preserved.
```
```    10  * ====================================================
```
```    11  */
```
```    12
```
```    13 #if defined(LIBM_SCCS) && !defined(lint)
```
```    14 static const char rcsid[] =
```
```    15     "\$NetBSD: k_cos.c,v 1.8 1995/05/10 20:46:22 jtc Exp \$";
```
```    16 #endif
```
```    17
```
```    18 /*
```
```    19  * __kernel_cos( x,  y )
```
```    20  * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
```
```    21  * Input x is assumed to be bounded by ~pi/4 in magnitude.
```
```    22  * Input y is the tail of x.
```
```    23  *
```
```    24  * Algorithm
```
```    25  *	1. Since cos(-x) = cos(x), we need only to consider positive x.
```
```    26  *	2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
```
```    27  *	3. cos(x) is approximated by a polynomial of degree 14 on
```
```    28  *	   [0,pi/4]
```
```    29  *		  	                 4            14
```
```    30  *	   	cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
```
```    31  *	   where the remez error is
```
```    32  *
```
```    33  * 	|              2     4     6     8     10    12     14 |     -58
```
```    34  * 	|cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
```
```    35  * 	|    					               |
```
```    36  *
```
```    37  * 	               4     6     8     10    12     14
```
```    38  *	4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
```
```    39  *	       cos(x) = 1 - x*x/2 + r
```
```    40  *	   since cos(x+y) ~ cos(x) - sin(x)*y
```
```    41  *			  ~ cos(x) - x*y,
```
```    42  *	   a correction term is necessary in cos(x) and hence
```
```    43  *		cos(x+y) = 1 - (x*x/2 - (r - x*y))
```
```    44  *	   For better accuracy when x > 0.3, let qx = |x|/4 with
```
```    45  *	   the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
```
```    46  *	   Then
```
```    47  *		cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
```
```    48  *	   Note that 1-qx and (x*x/2-qx) is EXACT here, and the
```
```    49  *	   magnitude of the latter is at least a quarter of x*x/2,
```
```    50  *	   thus, reducing the rounding error in the subtraction.
```
```    51  */
```
```    52
```
```    53 #include "math_libm.h"
```
```    54 #include "math_private.h"
```
```    55
```
```    56 #ifdef __STDC__
```
```    57 static const double
```
```    58 #else
```
```    59 static double
```
```    60 #endif
```
```    61   one = 1.00000000000000000000e+00,     /* 0x3FF00000, 0x00000000 */
```
```    62     C1 = 4.16666666666666019037e-02,    /* 0x3FA55555, 0x5555554C */
```
```    63     C2 = -1.38888888888741095749e-03,   /* 0xBF56C16C, 0x16C15177 */
```
```    64     C3 = 2.48015872894767294178e-05,    /* 0x3EFA01A0, 0x19CB1590 */
```
```    65     C4 = -2.75573143513906633035e-07,   /* 0xBE927E4F, 0x809C52AD */
```
```    66     C5 = 2.08757232129817482790e-09,    /* 0x3E21EE9E, 0xBDB4B1C4 */
```
```    67     C6 = -1.13596475577881948265e-11;   /* 0xBDA8FAE9, 0xBE8838D4 */
```
```    68
```
```    69 #ifdef __STDC__
```
```    70 double attribute_hidden
```
```    71 __kernel_cos(double x, double y)
```
```    72 #else
```
```    73 double attribute_hidden
```
```    74 __kernel_cos(x, y)
```
```    75      double x, y;
```
```    76 #endif
```
```    77 {
```
```    78     double a, hz, z, r, qx;
```
```    79     int32_t ix;
```
```    80     GET_HIGH_WORD(ix, x);
```
```    81     ix &= 0x7fffffff;           /* ix = |x|'s high word */
```
```    82     if (ix < 0x3e400000) {      /* if x < 2**27 */
```
```    83         if (((int) x) == 0)
```
```    84             return one;         /* generate inexact */
```
```    85     }
```
```    86     z = x * x;
```
```    87     r = z * (C1 + z * (C2 + z * (C3 + z * (C4 + z * (C5 + z * C6)))));
```
```    88     if (ix < 0x3FD33333)        /* if |x| < 0.3 */
```
```    89         return one - (0.5 * z - (z * r - x * y));
```
```    90     else {
```
```    91         if (ix > 0x3fe90000) {  /* x > 0.78125 */
```
```    92             qx = 0.28125;
```
```    93         } else {
```
```    94             INSERT_WORDS(qx, ix - 0x00200000, 0);       /* x/4 */
```
```    95         }
```
```    96         hz = 0.5 * z - qx;
```
```    97         a = one - qx;
```
```    98         return a - (hz - (z * r - x * y));
```
```    99     }
```
```   100 }
```