slouken@8840
|
1 |
/*
|
slouken@8840
|
2 |
* ====================================================
|
slouken@8840
|
3 |
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
slouken@8840
|
4 |
*
|
slouken@8840
|
5 |
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
slouken@8840
|
6 |
* Permission to use, copy, modify, and distribute this
|
slouken@8840
|
7 |
* software is freely granted, provided that this notice
|
slouken@8840
|
8 |
* is preserved.
|
slouken@8840
|
9 |
* ====================================================
|
slouken@8840
|
10 |
*/
|
slouken@8840
|
11 |
|
slouken@8840
|
12 |
/* tan(x)
|
slouken@8840
|
13 |
* Return tangent function of x.
|
slouken@8840
|
14 |
*
|
slouken@8840
|
15 |
* kernel function:
|
slouken@8840
|
16 |
* __kernel_tan ... tangent function on [-pi/4,pi/4]
|
slouken@8840
|
17 |
* __ieee754_rem_pio2 ... argument reduction routine
|
slouken@8840
|
18 |
*
|
slouken@8840
|
19 |
* Method.
|
slouken@8840
|
20 |
* Let S,C and T denote the sin, cos and tan respectively on
|
slouken@8840
|
21 |
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
slouken@8840
|
22 |
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
slouken@8840
|
23 |
* We have
|
slouken@8840
|
24 |
*
|
slouken@8840
|
25 |
* n sin(x) cos(x) tan(x)
|
slouken@8840
|
26 |
* ----------------------------------------------------------
|
slouken@8840
|
27 |
* 0 S C T
|
slouken@8840
|
28 |
* 1 C -S -1/T
|
slouken@8840
|
29 |
* 2 -S -C T
|
slouken@8840
|
30 |
* 3 -C S -1/T
|
slouken@8840
|
31 |
* ----------------------------------------------------------
|
slouken@8840
|
32 |
*
|
slouken@8840
|
33 |
* Special cases:
|
slouken@8840
|
34 |
* Let trig be any of sin, cos, or tan.
|
slouken@8840
|
35 |
* trig(+-INF) is NaN, with signals;
|
slouken@8840
|
36 |
* trig(NaN) is that NaN;
|
slouken@8840
|
37 |
*
|
slouken@8840
|
38 |
* Accuracy:
|
slouken@8840
|
39 |
* TRIG(x) returns trig(x) nearly rounded
|
slouken@8840
|
40 |
*/
|
slouken@8840
|
41 |
|
slouken@8842
|
42 |
#include "math_libm.h"
|
slouken@8840
|
43 |
#include "math_private.h"
|
slouken@8840
|
44 |
|
slouken@8840
|
45 |
double tan(double x)
|
slouken@8840
|
46 |
{
|
slouken@8840
|
47 |
double y[2],z=0.0;
|
slouken@8840
|
48 |
int32_t n, ix;
|
slouken@8840
|
49 |
|
slouken@8840
|
50 |
/* High word of x. */
|
slouken@8840
|
51 |
GET_HIGH_WORD(ix,x);
|
slouken@8840
|
52 |
|
slouken@8840
|
53 |
/* |x| ~< pi/4 */
|
slouken@8840
|
54 |
ix &= 0x7fffffff;
|
slouken@8840
|
55 |
if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
|
slouken@8840
|
56 |
|
slouken@8840
|
57 |
/* tan(Inf or NaN) is NaN */
|
slouken@8840
|
58 |
else if (ix>=0x7ff00000) return x-x; /* NaN */
|
slouken@8840
|
59 |
|
slouken@8840
|
60 |
/* argument reduction needed */
|
slouken@8840
|
61 |
else {
|
slouken@8840
|
62 |
n = __ieee754_rem_pio2(x,y);
|
slouken@8840
|
63 |
return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
|
slouken@8840
|
64 |
-1 -- n odd */
|
slouken@8840
|
65 |
}
|
slouken@8840
|
66 |
}
|
slouken@8840
|
67 |
libm_hidden_def(tan)
|