Skip to content

Latest commit

 

History

History
787 lines (648 loc) · 29.8 KB

SDL_audiotypecvt.c

File metadata and controls

787 lines (648 loc) · 29.8 KB
 
1
2
/*
Simple DirectMedia Layer
Jan 2, 2017
Jan 2, 2017
3
Copyright (C) 1997-2017 Sam Lantinga <slouken@libsdl.org>
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "../SDL_internal.h"
#include "SDL_audio.h"
#include "SDL_audio_c.h"
Jan 16, 2017
Jan 16, 2017
25
#include "SDL_cpuinfo.h"
Nov 5, 2016
Nov 5, 2016
26
#include "SDL_assert.h"
Jan 16, 2017
Jan 16, 2017
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
/* !!! FIXME: write NEON code. */
#define HAVE_NEON_INTRINSICS 0
/* !!! FIXME: wire this up to the configure script, etc. */
#define HAVE_SSE2_INTRINSICS 0
#if HAVE_SSE2_INTRINSICS
#include <emmintrin.h>
#endif
#if defined(__x86_64__) && HAVE_SSE2_INTRINSICS
#define NEED_SCALAR_CONVERTER_FALLBACKS 0 /* x86_64 guarantees SSE2. */
#elif __MACOSX__ && HAVE_SSE2_INTRINSICS
#define NEED_SCALAR_CONVERTER_FALLBACKS 0 /* Mac OS X/Intel guarantees SSE2. */
#elif defined(__ARM_ARCH) && (__ARM_ARCH >= 8) && HAVE_NEON_INTRINSICS
#define NEED_SCALAR_CONVERTER_FALLBACKS 0 /* ARMv8+ promise NEON. */
#elif defined(__APPLE__) && defined(__ARM_ARCH) && (__ARM_ARCH >= 7) && HAVE_NEON_INTRINSICS
#define NEED_SCALAR_CONVERTER_FALLBACKS 0 /* All Apple ARMv7 chips promise NEON support. */
#endif
/* Set to zero if platform is guaranteed to use a SIMD codepath here. */
#ifndef NEED_SCALAR_CONVERTER_FALLBACKS
#define NEED_SCALAR_CONVERTER_FALLBACKS 1
#endif
/* Function pointers set to a CPU-specific implementation. */
SDL_AudioFilter SDL_Convert_S8_to_F32 = NULL;
SDL_AudioFilter SDL_Convert_U8_to_F32 = NULL;
SDL_AudioFilter SDL_Convert_S16_to_F32 = NULL;
SDL_AudioFilter SDL_Convert_U16_to_F32 = NULL;
SDL_AudioFilter SDL_Convert_S32_to_F32 = NULL;
SDL_AudioFilter SDL_Convert_F32_to_S8 = NULL;
SDL_AudioFilter SDL_Convert_F32_to_U8 = NULL;
SDL_AudioFilter SDL_Convert_F32_to_S16 = NULL;
SDL_AudioFilter SDL_Convert_F32_to_U16 = NULL;
SDL_AudioFilter SDL_Convert_F32_to_S32 = NULL;
66
67
68
69
#define DIVBY127 0.0078740157480315f
#define DIVBY32767 3.05185094759972e-05f
#define DIVBY2147483647 4.6566128752458e-10f
Jan 16, 2017
Jan 16, 2017
70
71
72
73
#if NEED_SCALAR_CONVERTER_FALLBACKS
static void SDLCALL
SDL_Convert_S8_to_F32_Scalar(SDL_AudioCVT *cvt, SDL_AudioFormat format)
Jan 15, 2017
Jan 15, 2017
75
const Sint8 *src = ((const Sint8 *) (cvt->buf + cvt->len_cvt)) - 1;
Nov 5, 2016
Nov 5, 2016
76
float *dst = ((float *) (cvt->buf + cvt->len_cvt * 4)) - 1;
Nov 5, 2016
Nov 5, 2016
79
LOG_DEBUG_CONVERT("AUDIO_S8", "AUDIO_F32");
Jan 15, 2017
Jan 15, 2017
81
82
for (i = cvt->len_cvt; i; --i, --src, --dst) {
*dst = (((float) *src) * DIVBY127);
83
84
85
86
}
cvt->len_cvt *= 4;
if (cvt->filters[++cvt->filter_index]) {
Nov 5, 2016
Nov 5, 2016
87
cvt->filters[cvt->filter_index](cvt, AUDIO_F32SYS);
Jan 16, 2017
Jan 16, 2017
91
92
static void SDLCALL
SDL_Convert_U8_to_F32_Scalar(SDL_AudioCVT *cvt, SDL_AudioFormat format)
Nov 5, 2016
Nov 5, 2016
94
95
const Uint8 *src = ((const Uint8 *) (cvt->buf + cvt->len_cvt)) - 1;
float *dst = ((float *) (cvt->buf + cvt->len_cvt * 4)) - 1;
Nov 5, 2016
Nov 5, 2016
98
LOG_DEBUG_CONVERT("AUDIO_U8", "AUDIO_F32");
Jan 15, 2017
Jan 15, 2017
100
for (i = cvt->len_cvt; i; --i, --src, --dst) {
Nov 5, 2016
Nov 5, 2016
101
*dst = ((((float) *src) * DIVBY127) - 1.0f);
102
103
104
105
}
cvt->len_cvt *= 4;
if (cvt->filters[++cvt->filter_index]) {
Nov 5, 2016
Nov 5, 2016
106
cvt->filters[cvt->filter_index](cvt, AUDIO_F32SYS);
Jan 16, 2017
Jan 16, 2017
110
111
static void SDLCALL
SDL_Convert_S16_to_F32_Scalar(SDL_AudioCVT *cvt, SDL_AudioFormat format)
Nov 5, 2016
Nov 5, 2016
113
114
const Sint16 *src = ((const Sint16 *) (cvt->buf + cvt->len_cvt)) - 1;
float *dst = ((float *) (cvt->buf + cvt->len_cvt * 2)) - 1;
Nov 5, 2016
Nov 5, 2016
117
LOG_DEBUG_CONVERT("AUDIO_S16", "AUDIO_F32");
Nov 5, 2016
Nov 5, 2016
119
120
for (i = cvt->len_cvt / sizeof (Sint16); i; --i, --src, --dst) {
*dst = (((float) *src) * DIVBY32767);
121
122
123
124
}
cvt->len_cvt *= 2;
if (cvt->filters[++cvt->filter_index]) {
Nov 5, 2016
Nov 5, 2016
125
cvt->filters[cvt->filter_index](cvt, AUDIO_F32SYS);
Jan 16, 2017
Jan 16, 2017
129
130
static void SDLCALL
SDL_Convert_U16_to_F32_Scalar(SDL_AudioCVT *cvt, SDL_AudioFormat format)
Nov 5, 2016
Nov 5, 2016
132
133
const Uint16 *src = ((const Uint16 *) (cvt->buf + cvt->len_cvt)) - 1;
float *dst = ((float *) (cvt->buf + cvt->len_cvt * 2)) - 1;
Nov 5, 2016
Nov 5, 2016
136
LOG_DEBUG_CONVERT("AUDIO_U16", "AUDIO_F32");
Nov 5, 2016
Nov 5, 2016
138
139
for (i = cvt->len_cvt / sizeof (Uint16); i; --i, --src, --dst) {
*dst = ((((float) *src) * DIVBY32767) - 1.0f);
140
141
142
143
}
cvt->len_cvt *= 2;
if (cvt->filters[++cvt->filter_index]) {
Nov 5, 2016
Nov 5, 2016
144
cvt->filters[cvt->filter_index](cvt, AUDIO_F32SYS);
Jan 16, 2017
Jan 16, 2017
148
149
static void SDLCALL
SDL_Convert_S32_to_F32_Scalar(SDL_AudioCVT *cvt, SDL_AudioFormat format)
Jan 15, 2017
Jan 15, 2017
151
const Sint32 *src = (const Sint32 *) cvt->buf;
Nov 5, 2016
Nov 5, 2016
152
float *dst = (float *) cvt->buf;
Nov 5, 2016
Nov 5, 2016
155
LOG_DEBUG_CONVERT("AUDIO_S32", "AUDIO_F32");
Nov 5, 2016
Nov 5, 2016
157
for (i = cvt->len_cvt / sizeof (Sint32); i; --i, ++src, ++dst) {
Jan 15, 2017
Jan 15, 2017
158
*dst = (float) (((double) *src) * DIVBY2147483647);
159
160
161
}
if (cvt->filters[++cvt->filter_index]) {
Nov 5, 2016
Nov 5, 2016
162
cvt->filters[cvt->filter_index](cvt, AUDIO_F32SYS);
Jan 16, 2017
Jan 16, 2017
166
167
static void SDLCALL
SDL_Convert_F32_to_S8_Scalar(SDL_AudioCVT *cvt, SDL_AudioFormat format)
Nov 5, 2016
Nov 5, 2016
169
170
const float *src = (const float *) cvt->buf;
Sint8 *dst = (Sint8 *) cvt->buf;
Nov 5, 2016
Nov 5, 2016
173
LOG_DEBUG_CONVERT("AUDIO_F32", "AUDIO_S8");
Nov 5, 2016
Nov 5, 2016
175
176
for (i = cvt->len_cvt / sizeof (float); i; --i, ++src, ++dst) {
*dst = (Sint8) (*src * 127.0f);
Nov 5, 2016
Nov 5, 2016
179
cvt->len_cvt /= 4;
180
if (cvt->filters[++cvt->filter_index]) {
Nov 5, 2016
Nov 5, 2016
181
cvt->filters[cvt->filter_index](cvt, AUDIO_S8);
Jan 16, 2017
Jan 16, 2017
185
186
static void SDLCALL
SDL_Convert_F32_to_U8_Scalar(SDL_AudioCVT *cvt, SDL_AudioFormat format)
Nov 5, 2016
Nov 5, 2016
188
189
const float *src = (const float *) cvt->buf;
Uint8 *dst = (Uint8 *) cvt->buf;
Nov 5, 2016
Nov 5, 2016
192
LOG_DEBUG_CONVERT("AUDIO_F32", "AUDIO_U8");
Nov 5, 2016
Nov 5, 2016
194
195
for (i = cvt->len_cvt / sizeof (float); i; --i, ++src, ++dst) {
*dst = (Uint8) ((*src + 1.0f) * 127.0f);
Nov 5, 2016
Nov 5, 2016
198
cvt->len_cvt /= 4;
199
if (cvt->filters[++cvt->filter_index]) {
Nov 5, 2016
Nov 5, 2016
200
cvt->filters[cvt->filter_index](cvt, AUDIO_U8);
Jan 16, 2017
Jan 16, 2017
204
205
static void SDLCALL
SDL_Convert_F32_to_S16_Scalar(SDL_AudioCVT *cvt, SDL_AudioFormat format)
Nov 5, 2016
Nov 5, 2016
207
208
const float *src = (const float *) cvt->buf;
Sint16 *dst = (Sint16 *) cvt->buf;
Nov 5, 2016
Nov 5, 2016
211
LOG_DEBUG_CONVERT("AUDIO_F32", "AUDIO_S16");
Nov 5, 2016
Nov 5, 2016
213
214
for (i = cvt->len_cvt / sizeof (float); i; --i, ++src, ++dst) {
*dst = (Sint16) (*src * 32767.0f);
Nov 5, 2016
Nov 5, 2016
217
cvt->len_cvt /= 2;
218
if (cvt->filters[++cvt->filter_index]) {
Nov 5, 2016
Nov 5, 2016
219
cvt->filters[cvt->filter_index](cvt, AUDIO_S16SYS);
Jan 16, 2017
Jan 16, 2017
223
224
static void SDLCALL
SDL_Convert_F32_to_U16_Scalar(SDL_AudioCVT *cvt, SDL_AudioFormat format)
Nov 5, 2016
Nov 5, 2016
226
227
const float *src = (const float *) cvt->buf;
Uint16 *dst = (Uint16 *) cvt->buf;
Nov 5, 2016
Nov 5, 2016
230
LOG_DEBUG_CONVERT("AUDIO_F32", "AUDIO_U16");
Nov 5, 2016
Nov 5, 2016
232
233
for (i = cvt->len_cvt / sizeof (float); i; --i, ++src, ++dst) {
*dst = (Uint16) ((*src + 1.0f) * 32767.0f);
Nov 5, 2016
Nov 5, 2016
236
cvt->len_cvt /= 2;
237
if (cvt->filters[++cvt->filter_index]) {
Nov 5, 2016
Nov 5, 2016
238
cvt->filters[cvt->filter_index](cvt, AUDIO_U16SYS);
Jan 16, 2017
Jan 16, 2017
242
243
static void SDLCALL
SDL_Convert_F32_to_S32_Scalar(SDL_AudioCVT *cvt, SDL_AudioFormat format)
Nov 5, 2016
Nov 5, 2016
245
246
const float *src = (const float *) cvt->buf;
Sint32 *dst = (Sint32 *) cvt->buf;
Nov 5, 2016
Nov 5, 2016
249
LOG_DEBUG_CONVERT("AUDIO_F32", "AUDIO_S32");
Nov 5, 2016
Nov 5, 2016
251
for (i = cvt->len_cvt / sizeof (float); i; --i, ++src, ++dst) {
Jan 15, 2017
Jan 15, 2017
252
*dst = (Sint32) (((double) *src) * 2147483647.0);
253
254
255
}
if (cvt->filters[++cvt->filter_index]) {
Nov 5, 2016
Nov 5, 2016
256
cvt->filters[cvt->filter_index](cvt, AUDIO_S32SYS);
Jan 16, 2017
Jan 16, 2017
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
#endif
#if HAVE_SSE2_INTRINSICS
static void SDLCALL
SDL_Convert_S8_to_F32_SSE2(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const Sint8 *src = ((const Sint8 *) (cvt->buf + cvt->len_cvt)) - 1;
float *dst = ((float *) (cvt->buf + cvt->len_cvt * 4)) - 1;
int i;
LOG_DEBUG_CONVERT("AUDIO_S8", "AUDIO_F32 (using SSE2)");
/* Get dst aligned to 16 bytes (since buffer is growing, we don't have to worry about overreading from src) */
for (i = cvt->len_cvt; i && (((size_t) (dst-15)) & 15); --i, --src, --dst) {
*dst = (((float) *src) * DIVBY127);
}
src -= 15; dst -= 15; /* adjust to read SSE blocks from the start. */
SDL_assert(!i || ((((size_t) dst) & 15) == 0));
/* Make sure src is aligned too. */
if ((((size_t) src) & 15) == 0) {
/* Aligned! Do SSE blocks as long as we have 16 bytes available. */
const __m128i *mmsrc = (const __m128i *) src;
const __m128i zero = _mm_setzero_si128();
const __m128 divby127 = _mm_set1_ps(DIVBY127);
while (i >= 16) { /* 16 * 8-bit */
const __m128i bytes = _mm_load_si128(mmsrc); /* get 16 sint8 into an XMM register. */
/* treat as int16, shift left to clear every other sint16, then back right with sign-extend. Now sint16. */
const __m128i shorts1 = _mm_srai_epi16(_mm_slli_epi16(bytes, 8), 8);
/* right-shift-sign-extend gets us sint16 with the other set of values. */
const __m128i shorts2 = _mm_srai_epi16(bytes, 8);
/* unpack against zero to make these int32, shift to make them sign-extend, convert to float, multiply. Whew! */
const __m128 floats1 = _mm_mul_ps(_mm_cvtepi32_ps(_mm_srai_epi32(_mm_slli_epi32(_mm_unpacklo_epi16(shorts1, zero), 16), 16)), divby127);
const __m128 floats2 = _mm_mul_ps(_mm_cvtepi32_ps(_mm_srai_epi32(_mm_slli_epi32(_mm_unpacklo_epi16(shorts2, zero), 16), 16)), divby127);
const __m128 floats3 = _mm_mul_ps(_mm_cvtepi32_ps(_mm_srai_epi32(_mm_slli_epi32(_mm_unpackhi_epi16(shorts1, zero), 16), 16)), divby127);
const __m128 floats4 = _mm_mul_ps(_mm_cvtepi32_ps(_mm_srai_epi32(_mm_slli_epi32(_mm_unpackhi_epi16(shorts2, zero), 16), 16)), divby127);
/* Interleave back into correct order, store. */
_mm_store_ps(dst, _mm_unpacklo_ps(floats1, floats2));
_mm_store_ps(dst+4, _mm_unpackhi_ps(floats1, floats2));
_mm_store_ps(dst+8, _mm_unpacklo_ps(floats3, floats4));
_mm_store_ps(dst+12, _mm_unpackhi_ps(floats3, floats4));
i -= 16; mmsrc--; dst -= 16;
}
src = (const Sint8 *) mmsrc;
}
src += 15; dst += 15; /* adjust for any scalar finishing. */
/* Finish off any leftovers with scalar operations. */
while (i) {
*dst = (((float) *src) * DIVBY127);
i--; src--; dst--;
}
cvt->len_cvt *= 4;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, AUDIO_F32SYS);
}
}
static void SDLCALL
SDL_Convert_U8_to_F32_SSE2(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const Uint8 *src = ((const Uint8 *) (cvt->buf + cvt->len_cvt)) - 1;
float *dst = ((float *) (cvt->buf + cvt->len_cvt * 4)) - 1;
int i;
LOG_DEBUG_CONVERT("AUDIO_U8", "AUDIO_F32 (using SSE2)");
/* Get dst aligned to 16 bytes (since buffer is growing, we don't have to worry about overreading from src) */
for (i = cvt->len_cvt; i && (((size_t) (dst-15)) & 15); --i, --src, --dst) {
*dst = ((((float) *src) * DIVBY127) - 1.0f);
}
src -= 15; dst -= 15; /* adjust to read SSE blocks from the start. */
SDL_assert(!i || ((((size_t) dst) & 15) == 0));
/* Make sure src is aligned too. */
if ((((size_t) src) & 15) == 0) {
/* Aligned! Do SSE blocks as long as we have 16 bytes available. */
const __m128i *mmsrc = (const __m128i *) src;
const __m128i zero = _mm_setzero_si128();
const __m128 divby127 = _mm_set1_ps(DIVBY127);
const __m128 minus1 = _mm_set1_ps(-1.0f);
while (i >= 16) { /* 16 * 8-bit */
const __m128i bytes = _mm_load_si128(mmsrc); /* get 16 uint8 into an XMM register. */
/* treat as int16, shift left to clear every other sint16, then back right with zero-extend. Now uint16. */
const __m128i shorts1 = _mm_srli_epi16(_mm_slli_epi16(bytes, 8), 8);
/* right-shift-zero-extend gets us uint16 with the other set of values. */
const __m128i shorts2 = _mm_srli_epi16(bytes, 8);
/* unpack against zero to make these int32, convert to float, multiply, add. Whew! */
/* Note that AVX2 can do floating point multiply+add in one instruction, fwiw. SSE2 cannot. */
const __m128 floats1 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_unpacklo_epi16(shorts1, zero)), divby127), minus1);
const __m128 floats2 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_unpacklo_epi16(shorts2, zero)), divby127), minus1);
const __m128 floats3 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_unpackhi_epi16(shorts1, zero)), divby127), minus1);
const __m128 floats4 = _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_unpackhi_epi16(shorts2, zero)), divby127), minus1);
/* Interleave back into correct order, store. */
_mm_store_ps(dst, _mm_unpacklo_ps(floats1, floats2));
_mm_store_ps(dst+4, _mm_unpackhi_ps(floats1, floats2));
_mm_store_ps(dst+8, _mm_unpacklo_ps(floats3, floats4));
_mm_store_ps(dst+12, _mm_unpackhi_ps(floats3, floats4));
i -= 16; mmsrc--; dst -= 16;
}
src = (const Uint8 *) mmsrc;
}
src += 15; dst += 15; /* adjust for any scalar finishing. */
/* Finish off any leftovers with scalar operations. */
while (i) {
*dst = ((((float) *src) * DIVBY127) - 1.0f);
i--; src--; dst--;
}
cvt->len_cvt *= 4;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, AUDIO_F32SYS);
}
}
static void SDLCALL
SDL_Convert_S16_to_F32_SSE2(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const Sint16 *src = ((const Sint16 *) (cvt->buf + cvt->len_cvt)) - 1;
float *dst = ((float *) (cvt->buf + cvt->len_cvt * 2)) - 1;
int i;
LOG_DEBUG_CONVERT("AUDIO_S16", "AUDIO_F32 (using SSE2)");
/* Get dst aligned to 16 bytes (since buffer is growing, we don't have to worry about overreading from src) */
for (i = cvt->len_cvt / sizeof (Sint16); i && (((size_t) (dst-7)) & 15); --i, --src, --dst) {
*dst = (((float) *src) * DIVBY32767);
}
src -= 7; dst -= 7; /* adjust to read SSE blocks from the start. */
SDL_assert(!i || ((((size_t) dst) & 15) == 0));
/* Make sure src is aligned too. */
if ((((size_t) src) & 15) == 0) {
/* Aligned! Do SSE blocks as long as we have 16 bytes available. */
const __m128 divby32767 = _mm_set1_ps(DIVBY32767);
while (i >= 8) { /* 8 * 16-bit */
const __m128i ints = _mm_load_si128((__m128i const *) src); /* get 8 sint16 into an XMM register. */
/* treat as int32, shift left to clear every other sint16, then back right with sign-extend. Now sint32. */
const __m128i a = _mm_srai_epi32(_mm_slli_epi32(ints, 16), 16);
/* right-shift-sign-extend gets us sint32 with the other set of values. */
const __m128i b = _mm_srai_epi32(ints, 16);
/* Interleave these back into the right order, convert to float, multiply, store. */
_mm_store_ps(dst, _mm_mul_ps(_mm_cvtepi32_ps(_mm_unpacklo_epi32(a, b)), divby32767));
_mm_store_ps(dst+4, _mm_mul_ps(_mm_cvtepi32_ps(_mm_unpackhi_epi32(a, b)), divby32767));
i -= 8; src -= 8; dst -= 8;
}
}
src += 7; dst += 7; /* adjust for any scalar finishing. */
/* Finish off any leftovers with scalar operations. */
while (i) {
*dst = (((float) *src) * DIVBY32767);
i--; src--; dst--;
}
cvt->len_cvt *= 2;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, AUDIO_F32SYS);
}
}
static void SDLCALL
SDL_Convert_U16_to_F32_SSE2(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const Uint16 *src = ((const Uint16 *) (cvt->buf + cvt->len_cvt)) - 1;
float *dst = ((float *) (cvt->buf + cvt->len_cvt * 2)) - 1;
int i;
LOG_DEBUG_CONVERT("AUDIO_U16", "AUDIO_F32 (using SSE2)");
/* Get dst aligned to 16 bytes (since buffer is growing, we don't have to worry about overreading from src) */
for (i = cvt->len_cvt / sizeof (Sint16); i && (((size_t) (dst-7)) & 15); --i, --src, --dst) {
*dst = ((((float) *src) * DIVBY32767) - 1.0f);
}
src -= 7; dst -= 7; /* adjust to read SSE blocks from the start. */
SDL_assert(!i || ((((size_t) dst) & 15) == 0));
/* Make sure src is aligned too. */
if ((((size_t) src) & 15) == 0) {
/* Aligned! Do SSE blocks as long as we have 16 bytes available. */
const __m128 divby32767 = _mm_set1_ps(DIVBY32767);
const __m128 minus1 = _mm_set1_ps(1.0f);
while (i >= 8) { /* 8 * 16-bit */
const __m128i ints = _mm_load_si128((__m128i const *) src); /* get 8 sint16 into an XMM register. */
/* treat as int32, shift left to clear every other sint16, then back right with zero-extend. Now sint32. */
const __m128i a = _mm_srli_epi32(_mm_slli_epi32(ints, 16), 16);
/* right-shift-sign-extend gets us sint32 with the other set of values. */
const __m128i b = _mm_srli_epi32(ints, 16);
/* Interleave these back into the right order, convert to float, multiply, store. */
_mm_store_ps(dst, _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_unpacklo_epi32(a, b)), divby32767), minus1));
_mm_store_ps(dst+4, _mm_add_ps(_mm_mul_ps(_mm_cvtepi32_ps(_mm_unpackhi_epi32(a, b)), divby32767), minus1));
i -= 8; src -= 8; dst -= 8;
}
}
src += 7; dst += 7; /* adjust for any scalar finishing. */
/* Finish off any leftovers with scalar operations. */
while (i) {
*dst = ((((float) *src) * DIVBY32767) - 1.0f);
i--; src--; dst--;
}
cvt->len_cvt *= 2;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, AUDIO_F32SYS);
}
}
static void SDLCALL
SDL_Convert_S32_to_F32_SSE2(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const Sint32 *src = (const Sint32 *) cvt->buf;
float *dst = (float *) cvt->buf;
int i;
LOG_DEBUG_CONVERT("AUDIO_S32", "AUDIO_F32 (using SSE2)");
/* Get dst aligned to 16 bytes */
for (i = cvt->len_cvt / sizeof (Sint32); i && (((size_t) dst) & 15); --i, ++src, ++dst) {
*dst = (float) (((double) *src) * DIVBY2147483647);
}
SDL_assert(!i || ((((size_t) dst) & 15) == 0));
SDL_assert(!i || ((((size_t) src) & 15) == 0));
{
/* Aligned! Do SSE blocks as long as we have 16 bytes available. */
const __m128d divby2147483647 = _mm_set1_pd(DIVBY2147483647);
const __m128i *mmsrc = (const __m128i *) src;
while (i >= 4) { /* 4 * sint32 */
const __m128i ints = _mm_load_si128(mmsrc);
/* bitshift the whole register over, so _mm_cvtepi32_pd can read the top ints in the bottom of the vector. */
const __m128d doubles1 = _mm_mul_pd(_mm_cvtepi32_pd(_mm_bsrli_si128(ints, 8)), divby2147483647);
const __m128d doubles2 = _mm_mul_pd(_mm_cvtepi32_pd(ints), divby2147483647);
/* convert to float32, bitshift/or to get these into a vector to store. */
_mm_store_ps(dst, _mm_castsi128_ps(_mm_or_si128(_mm_bslli_si128(_mm_castps_si128(_mm_cvtpd_ps(doubles1)), 8), _mm_castps_si128(_mm_cvtpd_ps(doubles2)))));
i -= 4; mmsrc++; dst += 4;
}
src = (const Sint32 *) mmsrc;
}
/* Finish off any leftovers with scalar operations. */
while (i) {
*dst = (float) (((double) *src) * DIVBY2147483647);
i--; src++; dst++;
}
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, AUDIO_F32SYS);
}
}
static void SDLCALL
SDL_Convert_F32_to_S8_SSE2(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const float *src = (const float *) cvt->buf;
Sint8 *dst = (Sint8 *) cvt->buf;
int i;
LOG_DEBUG_CONVERT("AUDIO_F32", "AUDIO_S8 (using SSE2)");
/* Get dst aligned to 16 bytes */
for (i = cvt->len_cvt / sizeof (float); i && (((size_t) dst) & 15); --i, ++src, ++dst) {
*dst = (Sint8) (*src * 127.0f);
}
SDL_assert(!i || ((((size_t) dst) & 15) == 0));
/* Make sure src is aligned too. */
if ((((size_t) src) & 15) == 0) {
/* Aligned! Do SSE blocks as long as we have 16 bytes available. */
const __m128 mulby127 = _mm_set1_ps(127.0f);
__m128i *mmdst = (__m128i *) dst;
while (i >= 16) { /* 16 * float32 */
const __m128i ints1 = _mm_cvtps_epi32(_mm_mul_ps(_mm_load_ps(src), mulby127)); /* load 4 floats, convert to sint32 */
const __m128i ints2 = _mm_cvtps_epi32(_mm_mul_ps(_mm_load_ps(src+4), mulby127)); /* load 4 floats, convert to sint32 */
const __m128i ints3 = _mm_cvtps_epi32(_mm_mul_ps(_mm_load_ps(src+8), mulby127)); /* load 4 floats, convert to sint32 */
const __m128i ints4 = _mm_cvtps_epi32(_mm_mul_ps(_mm_load_ps(src+12), mulby127)); /* load 4 floats, convert to sint32 */
_mm_store_si128(mmdst, _mm_packs_epi16(_mm_packs_epi32(ints1, ints2), _mm_packs_epi32(ints3, ints4))); /* pack down, store out. */
i -= 16; src += 16; mmdst++;
}
dst = (Sint8 *) mmdst;
}
/* Finish off any leftovers with scalar operations. */
while (i) {
*dst = (Sint8) (*src * 127.0f);
i--; src++; dst++;
}
cvt->len_cvt /= 4;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, AUDIO_S8);
}
}
static void SDLCALL
SDL_Convert_F32_to_U8_SSE2(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const float *src = (const float *) cvt->buf;
Uint8 *dst = (Uint8 *) cvt->buf;
int i;
LOG_DEBUG_CONVERT("AUDIO_F32", "AUDIO_U8 (using SSE2)");
/* Get dst aligned to 16 bytes */
for (i = cvt->len_cvt / sizeof (float); i && (((size_t) dst) & 15); --i, ++src, ++dst) {
*dst = (Uint8) ((*src + 1.0f) * 127.0f);
}
SDL_assert(!i || ((((size_t) dst) & 15) == 0));
/* Make sure src is aligned too. */
if ((((size_t) src) & 15) == 0) {
/* Aligned! Do SSE blocks as long as we have 16 bytes available. */
const __m128 add1 = _mm_set1_ps(1.0f);
const __m128 mulby127 = _mm_set1_ps(127.0f);
__m128i *mmdst = (__m128i *) dst;
while (i >= 16) { /* 16 * float32 */
const __m128i ints1 = _mm_cvtps_epi32(_mm_mul_ps(_mm_add_ps(_mm_load_ps(src), add1), mulby127)); /* load 4 floats, convert to sint32 */
const __m128i ints2 = _mm_cvtps_epi32(_mm_mul_ps(_mm_add_ps(_mm_load_ps(src+4), add1), mulby127)); /* load 4 floats, convert to sint32 */
const __m128i ints3 = _mm_cvtps_epi32(_mm_mul_ps(_mm_add_ps(_mm_load_ps(src+8), add1), mulby127)); /* load 4 floats, convert to sint32 */
const __m128i ints4 = _mm_cvtps_epi32(_mm_mul_ps(_mm_add_ps(_mm_load_ps(src+12), add1), mulby127)); /* load 4 floats, convert to sint32 */
_mm_store_si128(mmdst, _mm_packus_epi16(_mm_packs_epi32(ints1, ints2), _mm_packs_epi32(ints3, ints4))); /* pack down, store out. */
i -= 16; src += 16; mmdst++;
}
dst = (Uint8 *) mmdst;
}
/* Finish off any leftovers with scalar operations. */
while (i) {
*dst = (Uint8) ((*src + 1.0f) * 127.0f);
i--; src++; dst++;
}
cvt->len_cvt /= 4;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, AUDIO_U8);
}
}
static void SDLCALL
SDL_Convert_F32_to_S16_SSE2(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const float *src = (const float *) cvt->buf;
Sint16 *dst = (Sint16 *) cvt->buf;
int i;
LOG_DEBUG_CONVERT("AUDIO_F32", "AUDIO_S16 (using SSE2)");
/* Get dst aligned to 16 bytes */
for (i = cvt->len_cvt / sizeof (float); i && (((size_t) dst) & 15); --i, ++src, ++dst) {
*dst = (Sint16) (*src * 32767.0f);
}
SDL_assert(!i || ((((size_t) dst) & 15) == 0));
/* Make sure src is aligned too. */
if ((((size_t) src) & 15) == 0) {
/* Aligned! Do SSE blocks as long as we have 16 bytes available. */
const __m128 mulby32767 = _mm_set1_ps(32767.0f);
__m128i *mmdst = (__m128i *) dst;
while (i >= 8) { /* 8 * float32 */
const __m128i ints1 = _mm_cvtps_epi32(_mm_mul_ps(_mm_load_ps(src), mulby32767)); /* load 4 floats, convert to sint32 */
const __m128i ints2 = _mm_cvtps_epi32(_mm_mul_ps(_mm_load_ps(src+4), mulby32767)); /* load 4 floats, convert to sint32 */
_mm_store_si128(mmdst, _mm_packs_epi32(ints1, ints2)); /* pack to sint16, store out. */
i -= 8; src += 8; mmdst++;
}
dst = (Sint16 *) mmdst;
}
/* Finish off any leftovers with scalar operations. */
while (i) {
*dst = (((float) *src) * DIVBY32767);
i--; src++; dst++;
}
cvt->len_cvt /= 2;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, AUDIO_S16SYS);
}
}
static void SDLCALL
SDL_Convert_F32_to_U16_SSE2(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const float *src = (const float *) cvt->buf;
Uint16 *dst = (Uint16 *) cvt->buf;
int i;
LOG_DEBUG_CONVERT("AUDIO_F32", "AUDIO_U16 (using SSE2)");
/* Get dst aligned to 16 bytes */
for (i = cvt->len_cvt / sizeof (float); i && (((size_t) dst) & 15); --i, ++src, ++dst) {
*dst = (Uint16) ((*src + 1.0f) * 32767.0f);
}
SDL_assert(!i || ((((size_t) dst) & 15) == 0));
/* Make sure src is aligned too. */
if ((((size_t) src) & 15) == 0) {
/* Aligned! Do SSE blocks as long as we have 16 bytes available. */
/* This calculates differently than the scalar path because SSE2 can't
pack int32 data down to unsigned int16. _mm_packs_epi32 does signed
saturation, so that would corrupt our data. _mm_packus_epi32 exists,
but not before SSE 4.1. So we convert from float to sint16, packing
that down with legit signed saturation, and then xor the top bit
against 1. This results in the correct unsigned 16-bit value, even
though it looks like dark magic. */
const __m128 mulby32767 = _mm_set1_ps(32767.0f);
const __m128i topbit = _mm_set1_epi16(-32768);
__m128i *mmdst = (__m128i *) dst;
while (i >= 8) { /* 8 * float32 */
const __m128i ints1 = _mm_cvtps_epi32(_mm_mul_ps(_mm_load_ps(src), mulby32767)); /* load 4 floats, convert to sint32 */
const __m128i ints2 = _mm_cvtps_epi32(_mm_mul_ps(_mm_load_ps(src+4), mulby32767)); /* load 4 floats, convert to sint32 */
_mm_store_si128(mmdst, _mm_xor_si128(_mm_packs_epi32(ints1, ints2), topbit)); /* pack to sint16, xor top bit, store out. */
i -= 8; src += 8; mmdst++;
}
dst = (Uint16 *) mmdst;
}
/* Finish off any leftovers with scalar operations. */
while (i) {
*dst = (Uint16) ((*src + 1.0f) * 32767.0f);
i--; src++; dst++;
}
cvt->len_cvt /= 2;
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, AUDIO_U16SYS);
}
}
static void SDLCALL
SDL_Convert_F32_to_S32_SSE2(SDL_AudioCVT *cvt, SDL_AudioFormat format)
{
const float *src = (const float *) cvt->buf;
Sint32 *dst = (Sint32 *) cvt->buf;
int i;
LOG_DEBUG_CONVERT("AUDIO_F32", "AUDIO_S32 (using SSE2)");
/* Get dst aligned to 16 bytes */
for (i = cvt->len_cvt / sizeof (float); i && (((size_t) dst) & 15); --i, ++src, ++dst) {
*dst = (Sint32) (((double) *src) * 2147483647.0);
}
SDL_assert(!i || ((((size_t) dst) & 15) == 0));
SDL_assert(!i || ((((size_t) src) & 15) == 0));
{
/* Aligned! Do SSE blocks as long as we have 16 bytes available. */
const __m128d mulby2147483647 = _mm_set1_pd(2147483647.0);
__m128i *mmdst = (__m128i *) dst;
while (i >= 4) { /* 4 * float32 */
const __m128 floats = _mm_load_ps(src);
/* bitshift the whole register over, so _mm_cvtps_pd can read the top floats in the bottom of the vector. */
const __m128d doubles1 = _mm_mul_pd(_mm_cvtps_pd(_mm_castsi128_ps(_mm_bsrli_si128(_mm_castps_si128(floats), 8))), mulby2147483647);
const __m128d doubles2 = _mm_mul_pd(_mm_cvtps_pd(floats), mulby2147483647);
_mm_store_si128(mmdst, _mm_or_si128(_mm_bslli_si128(_mm_cvtpd_epi32(doubles1), 8), _mm_cvtpd_epi32(doubles2)));
i -= 4; src += 4; mmdst++;
}
dst = (Sint32 *) mmdst;
}
/* Finish off any leftovers with scalar operations. */
while (i) {
*dst = (Sint32) (((double) *src) * 2147483647.0);
i--; src++; dst++;
}
if (cvt->filters[++cvt->filter_index]) {
cvt->filters[cvt->filter_index](cvt, AUDIO_S32SYS);
}
}
#endif
void SDL_ChooseAudioConverters(void)
{
static SDL_bool converters_chosen = SDL_FALSE;
if (converters_chosen) {
return;
}
#define SET_CONVERTER_FUNCS(fntype) \
SDL_Convert_S8_to_F32 = SDL_Convert_S8_to_F32_##fntype; \
SDL_Convert_U8_to_F32 = SDL_Convert_U8_to_F32_##fntype; \
SDL_Convert_S16_to_F32 = SDL_Convert_S16_to_F32_##fntype; \
SDL_Convert_U16_to_F32 = SDL_Convert_U16_to_F32_##fntype; \
SDL_Convert_S32_to_F32 = SDL_Convert_S32_to_F32_##fntype; \
SDL_Convert_F32_to_S8 = SDL_Convert_F32_to_S8_##fntype; \
SDL_Convert_F32_to_U8 = SDL_Convert_F32_to_U8_##fntype; \
SDL_Convert_F32_to_S16 = SDL_Convert_F32_to_S16_##fntype; \
SDL_Convert_F32_to_U16 = SDL_Convert_F32_to_U16_##fntype; \
SDL_Convert_F32_to_S32 = SDL_Convert_F32_to_S32_##fntype; \
converters_chosen = SDL_TRUE
#if HAVE_SSE2_INTRINSICS
if (SDL_HasSSE2()) {
SET_CONVERTER_FUNCS(SSE2);
return;
}
#endif
#if NEED_SCALAR_CONVERTER_FALLBACKS
SET_CONVERTER_FUNCS(Scalar);
#endif
#undef SET_CONVERTER_FUNCS
SDL_assert(converters_chosen == SDL_TRUE);
}
786
787
/* vi: set ts=4 sw=4 expandtab: */